Теория графов

Исследование математической теории о совокупности непустого множества вершин и ребер. Анализ кратности неориентированных и ориентированных дуг. Характеристика понятия эквивалентности при множестве вершин. Обоснование гомеоморфного подразбиения дуги.

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 18.10.2013
Размер файла 89,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция

Теория графов

Рассмотрим чертеж вида:

Обозначения и определения:

V - множество точек - вершины;

X - множество линий - ребра.

Графом называется совокупность множеств вершин и ребер.

v - номер вершины;

{v,w} - обозначение ребра;

{v,v} - петли.

Одинаковые пары - параллельные или кратные ребра;

Кратностью ребер называют количество одинаковых пар.

Пример:

Если в графе есть петли и/или кратные ребра, то такой граф называют псевдографом.

Псевдограф без петель называется мультиграфом.

Мультиграф в котором ни одна пара не встречается более одного раза называется графом.

Если пары (v,w) являются упорядоченными, граф называется ориентированным (орграфом).

Ребра ориентированного графа называются дугами. В неориентированном графе ребра обозначаются неупорядоченной парой - {v,w}. В ориентированном графе дуги обозначаются упорядоченной парой - (v,w).

G, G0 - неориентированный граф, D, D0 - ориентированный.

Обозначают v,w - вершины, x,y,z - дуги и ребра.

Пример:

Тут:

Понятия смежности, инцидентности, степени:

Если x={v,w} - ребро, то v и w - концы ребра x.

Если x=(v,w) - дуга орграфа, то v - начало, w - конец дуги.

Если вершина v является концом ребра x неориентированного графа (началом или концом дуги x орграфа), то v и x называются инцидентными.

Вершины v, w называются смежными, если {v,w}X.

Степенью вершины v графа G называется число (v) ребер графа G, инцидентных вершине v.

Вершина графа, имеющая степень 0 называется изолированной, а степень 1 - висячей.

В неориентированном псевдографе вклад каждой петли инцидентной вершине v в степень вершины v равен 2.

Полустепенью исхода (захода) вершины v орграфа D называется число +(v) дуг орграфа D, исходящих из v (заходящих в v).

В случае ориентированного псевдографа вклад каждой петли инцидентной вершине v равен 1 как в +(v), так и в (v).

Обозначение: n(G), n(D) количество вершин графа, m(G) - количество ребер, m(D) - количество дуг.

Утверждение. Для каждого псевдографа G выполняется равенство:

Для каждого ориентированного псевдографа:

Изоморфизм, гомеоморфизм.

Графы G1=(V1,X1), G2=(V2,X2) называются изоморфными, если биективное (взаимно однозначное) отображение : V1V2, сохраняющее смежность, т. е.:

Орграфы D1=(V1,X1) и D2=(V2,X2) называются изоморфными, если биективное отображение : V1V2, такое, что:

Замечание. Изоморфные графы и орграфы отличаются лишь обозначением вершин. Свойства изоморфных графов:

1) Если изоморфны и : V1V2 биективное отображение, сохраняющее смежность то:

Где:

- количество вершин,

- количество дуг.

Аналогично, если изоморфны и : V1V2 биективное отображение, сохраняющее смежность то выполняется:

Замечание. Для псевдографов и мультиграфов нужно сохранять кратность ребер или дуг. Примеры:

Утверждение. Изоморфизм графов (орграфов) является отношением эквивалентности на множестве графов (орграфов).

Операцией подразбиения дуги (u,v) в орграфе D=(V,X) называется операция, которая состоит в удалении из X дуги (u,v), добавлении к V новой вершины w и добавлении к X\{(u,v)}, двух дуг (u,w) и (w,v).

Аналогично для ребер графа.

Орграф D2 называется подразбиением орграфа D1 если D2 получается из D1 путем последовательного применения операции подразбиения дуг.

Пример.

математический множество гомеоморфный

Орграфы (графы ) называются гомеоморфными, если их подразбиения, которые являются изоморфными.

Определение. Если степени всех вершин графа = k, то граф наз. регулярным степени k. (см. рис. выше).

Граф, состоящий из 1 вершины, называется тривиальным.

Двудольным называется граф G(V,X), такой, что множество вершин V разбито на 2 подмножества V1 и V2 (V1V2=V, V1V2=), причем каждое ребро инцидентно вершине из V1 и V2.

Размещено на Allbest.ru

...

Подобные документы

  • Восстановление графов по заданным матрицам смежности вершин. Построение для каждого графа матрицы смежности ребер, инцидентности, достижимости, контрдостижимости. Поиск композиции графов. Определение локальных степеней вершин графа. Поиск базы графов.

    лабораторная работа [85,5 K], добавлен 09.01.2009

  • Рассмотрение понятия и видов графов как совокупности непустого конечного множества элементов; условия их связанности. Доказательства существования замкнутых Эйлеровой, Гамильнотовой и бесконечной цепей. Ознакомление с элементарными свойствами деревьев.

    курсовая работа [1,4 M], добавлен 10.02.2012

  • Доказательство тождества с помощью диаграмм Эйлера-Венна. Определение вида логической формулы с помощью таблицы истинности. Рисунок графа G (V, E) с множеством вершин V. Поиск матриц смежности и инцидентности. Определение множества вершин и ребер графа.

    контрольная работа [463,0 K], добавлен 17.05.2015

  • Основополагающие понятия теории графов и теории групп. Определение эквивалентности, порождаемой группой подстановок, и доказательство леммы Бернсайда о числе классов такой эквивалентности. Сущность перечня конфигурации, доказательство теоремы Пойа.

    курсовая работа [682,9 K], добавлен 20.05.2013

  • Теория динамического программирования. Понятие об оптимальной подструктуре. Независимое и полностью зависимое множество вершин. Задача о поиске максимального независимого множества в дереве. Алгоритм Брона-Кербоша как метод ветвей, границ для поиска клик.

    реферат [224,1 K], добавлен 09.10.2012

  • Общее понятие, основные свойства и закономерности графов. Задача о Кенигсбергских мостах. Свойства отношения достижимости в графах. Связность и компонента связности графов. Соотношение между количеством вершин связного плоского графа, формула Эйлера.

    презентация [150,3 K], добавлен 16.01.2015

  • Основные понятия, связанные с графом. Решение задачи Эйлера о семи кёнигсбергских мостах. Необходимые и достаточные условия для эйлеровых и полуэйлеровых графов. Применение теории графов к решению задач по математике; степени вершин и подсчёт рёбер.

    курсовая работа [713,8 K], добавлен 16.05.2016

  • Граф как множество вершин (узлов), соединённых рёбрами, способы и сфера их применения. Специфика теории графов как раздела дискретной математики. Основные способы преобразования графов, их особенности и использование для решения математических задач.

    курсовая работа [1,8 M], добавлен 18.01.2013

  • Основные понятия теории графов. Степень вершины. Маршруты, цепи, циклы. Связность и свойства ориентированных и плоских графов, алгоритм их распознавания, изоморфизм. Операции над ними. Обзор способов задания графов. Эйлеровый и гамильтоновый циклы.

    презентация [430,0 K], добавлен 19.11.2013

  • Основные понятия теории графов. Расстояния в графах, диаметр, радиус и центр. Применение графов в практической деятельности человека. Определение кратчайших маршрутов. Эйлеровы и гамильтоновы графы. Элементы теории графов на факультативных занятиях.

    дипломная работа [145,5 K], добавлен 19.07.2011

  • Математическое описание системы автоматического управления с помощью графов. Составление графа и его преобразование, избавление от дифференциалов. Оптимизации ориентированных и неориентированных графов, составления матриц смежности и инцидентности.

    лабораторная работа [42,2 K], добавлен 11.03.2012

  • Определения понятия множество. Предельная точка множества, предел функции в точке. Эквивалентные, счетные и несчетные множества. Замкнутые и открытые множества. Функции на множестве. Свойства непрерывных функций на замкнутом ограниченном множестве.

    курсовая работа [222,3 K], добавлен 11.01.2011

  • Теория графов как раздел дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Основные понятия теории графов. Матрицы смежности и инцидентности и их практическое применение при анализе решений.

    реферат [368,2 K], добавлен 13.06.2011

  • Ориентированные и неориентированные графы: общая характеристика, специальные вершины и ребра, полустепени вершин, матрицы смежности, инцидентности, достижимости, связности. Числовые характеристики каждого графа, обход в глубину и в ширину, базис циклов.

    курсовая работа [225,5 K], добавлен 14.05.2012

  • Описание заданного графа множествами вершин V и дуг X, списками смежности, матрицей инцидентности и смежности. Матрица весов соответствующего неориентированного графа. Определение дерева кратчайших путей по алгоритму Дейкстры. Поиск деревьев на графе.

    курсовая работа [625,4 K], добавлен 30.09.2014

  • Теория графов как математический аппарат для решения задач. Характеристика теории графов. Критерий существования обхода всех ребер графа без повторений, полученный Л. Эйлером при решении задачи о Кенигсбергских мостах. Алгоритм на графах Дейкстры.

    контрольная работа [466,3 K], добавлен 11.03.2011

  • Основные понятия теории графов. Содержание метода Дейкстры нахождения расстояния от источника до всех остальных вершин в графе с неотрицательными весами дуг. Программная реализация исследуемого алгоритма. Построение матриц смежности и инцидентности.

    курсовая работа [228,5 K], добавлен 30.01.2012

  • Основополагающие понятия теории графов. Определение эквивалентности, порождаемое группой подстановок, и доказательство леммы Бернсайда о числе ее классов. Понятие перечня конфигурации и доказательство теоремы Пойа. Решение задачи о перечислении графов.

    курсовая работа [649,2 K], добавлен 18.01.2014

  • Спектральная теория графов. Теоремы теории матриц и их применение к исследованию спектров графов. Определение и спектр предфрактального фрактального графов с затравкой регулярной степени. Связи между спектральными и структурными свойствами графов.

    дипломная работа [272,5 K], добавлен 05.06.2014

  • Теоретико-множественная и геометрическая форма определения графов. Матрица смежностей вершин неориентированного и ориентированного графа. Элементы матрицы и их сумма. Свойства матрицы инцидентности и зависимость между ними. Подмножество столбцов.

    реферат [81,0 K], добавлен 23.11.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.