Предел функции нескольких переменных

Предел функции как величина, к которой стремится рассматриваемая функция при стремлении её аргумента к данной точке. Понятие функции нескольких переменных, вводимое для изучения подобных зависимостей. Область определения и непрерывность функции.

Рубрика Математика
Вид эссе
Язык русский
Дата добавления 18.10.2013
Размер файла 25,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Предел функции, непрерывность

Теорию пределов часто называют введением в математический анализ. Действительно, понятие предела лежит в основе всего дифференциального и интегрального исчисления.

Впервые строгое определение предела на "языке окрестностей" ввел французский математик О. Коши. Другое определение предела на "языке последовательностей" дано Г. Гейне.

Доказана равносильность этих определений и в процессе проведения математических заключений применяют любое из этих определений.

Предел функции (предельное значение функции) в заданной точке, предельной для области определения функции, -- такая величина, к которой стремится рассматриваемая функция при стремлении её аргумента к данной точке.

Предел функции является обобщением понятия предела последовательности: изначально под пределом функции в точке понимали предел последовательности элементов области значений функции, составленной из образов точек последовательности элементов области определения функции, сходящейся к заданной точке (предел в которой рассматривается); если такой предел существует, то говорят, что функция сходится к указанному значению; если такого предела не существует, то говорят, что функция расходится.

Наиболее часто определение предела функции формулируют на языке окрестностей. То, что предел функции рассматривается только в точках, предельных для области определения функции, означает, что в каждой окрестности данной точки есть точки области определения; это позволяет говорить о стремлении аргумента функции (к данной точке). Но предельная точка области определения не обязана принадлежать самой области определения: например, можно рассматривать предел функции на концах открытого интервала, на котором определена функция (сами концы интервала в область определения не входят).

В общем случае необходимо точно указывать способ сходимости функции, для чего вводят т.н. базу подмножеств области определения функции, и тогда формулируют определение предела функции по (заданной) базе. В этом смысле система проколотых окрестностей данной точки -- частный случай такой базы множеств.

Поскольку на расширенной вещественной прямой можно построить базу окрестностей бесконечно удалённой точки, то оказывается допустимым описание предела функции при стремлении аргумента к бесконечности, а также описание ситуации, когда функция сама стремится к бесконечности (в заданной точке). Предел последовательности (как предел функции натурального аргумента), как раз предоставляет пример сходимости по базе «стремление аргумента к бесконечности».

Отсутствие предела функции (в данной точке) означает, что для любого заранее заданного значения области значений и всякой его окрестности сколь угодно близко от заданной точки существуют точки, значение функции в которых окажется за пределами заданной окрестности.

Если в некоторой точке области определения функции существует предел и этот предел равен значению функции в данной точке, то функция оказывается непрерывной (в данной точке).

Предел функции -- одно из основных понятий математического анализа.Понятие функции одной переменной не охватывает все зависимости, существующие в природе. Даже в самых простых задачах встречаются величины, значения которых определяются совокупностью значений нескольких величин.

Для изучения подобных зависимостей вводится понятие функции нескольких переменных.

Понятие функции нескольких переменных - величина u называется функцией нескольких независимых переменных (x, y, z, …,t), если каждой совокупности значений этих переменных ставится в соответствие определенное значение величины u.

Если переменная является функцией от двух переменных х и у, то функциональную зависимость обозначают

z = f (x, y).

Символ f определяет здесь совокупность действий или правило для вычисления значения z по данной паре значений х и у.

Так, для функции z = x2 + 3xy

при х = 1 и у = 1 имеем z = 4,

при х = 2 и у = 3 имеем z = 22,

при х = 4 и у = 0 имеем z = 16 и т.д.

Аналогично называется величина u функцией от трех переменных x, y, z, если дано правило, как по данной тройке значений x, y и z вычислить соответствующее значение u:

u = F (x, y, z).

Здесь символ F определяет совокупность действий или правило для вычисления значения u, соответствующего данным значениям x, y и z.

Так, для функции u = xy + 2xz - 3yz

при х = 1, у = 1 и z = 1 имеем u = 0,

при х = 1, у = -2 и z = 3 имеем u = 22,

при х = 2, у = -1 и z = -2 имеем u = -16 и т.д.

Таким образом, если в силу некоторого закона каждой совокупности п чисел (x, y, z, …,t) из некоторого множества Е ставится в соответствие определенное значение переменной u, то и u называется функцией от п переменных x, y, z, …,t, определенной на множестве Е, и обозначается

u = f (x, y, z, …,t).

Переменные x, y, z, …,t называются аргументами функции, множество Е - областью определения функции.

Частным значением функции называется значение функции в некоторой точке М0 (x0, y0, z0, …,t0) и обозначается f (М0) = f (x0, y0, z0, …,t0).

Областью определения функции называется множество всех значений аргументов, которым соответствуют какие-либо действительные значения функции.

Функция двух переменных z = f (x, y) в пространстве представляется некоторой поверхностью. То есть, когда точка с координатами х, у пробегает всю область определения функции, расположенную в плоскости хОу, соответствующая пространственная точка, вообще говоря, описывает поверхность.

Функцию трех переменных u = F (x, y, z) рассматривают как функцию точки некоторого множества точек трехмерного пространства. Аналогично, функцию п переменных u = f (x, y, z, …,t) рассматривают как функцию точки некоторого п-мерного пространства.

Для того чтобы дать понятие предела функции нескольких переменных, ограничимся случаем двух переменных х и у. По определению функция f (x, y) имеет предел в точке (х0, у0), равный числу А, обозначаемый так:

(1)

(пишут еще f (x, y)>А при (x, y)> (х0, у0)), если она определена в некоторой окрестности точки (х0, у0), за исключением, быть может, самой этой точки и если существует предел

(2)

какова бы ни была стремящаяся к (х0, у0) последовательность точек (xk, yk).

Так же, как в случае функции одной переменной, можно ввести другое эквивалентное определение предела функции двух переменных: функция f имеет в точке (х0, у0) предел, равный А, если она определена в некоторой окрестности точки (х0, у0) за исключением, быть может, самой этой точки, и для любого е > 0 найдется такое д > 0, что

| f (x, y) - A | < е (3)

для всех (x, y), удовлетворяющих неравенствам

0 < < д. (4)

Теорема. Сумма, разность, произведение и частное непрерывных в точке х0 функций f (x) и ц (x) есть непрерывная функция в этой точке, если, конечно, в случае частного ц 0) ? 0.

Замечание. Приращение Дh f0) называют также полным приращением функции f в точке х0.

В пространстве Rn точек х = (x1, ..., хп) зададим множество точек G.

По определению х0 = 01, ..., х0п) есть внутренняя точка множества G, если существует открытый шар с центром в нем, полностью принадлежащий к G.

Множество G Rn называется открытым, если все его точки внутренние.

Говорят, что функции

х1 = ц1 (t), ..., хп = цп (t) (a ? t ? b)

непрерывные на отрезке [a, b], определяют непрерывную кривую в Rn, соединяющую точки х1 = 11, ..., х1п) и х2 = 21, ..., х2п), где х11 = ц1 (а), ..., х1п = цп (а), х21 = ц1 (b), ..., х2п = цп (b). Букву t называют параметром кривой.

Множество G называется связным, если любые его две точки х1, х2 можно соединить непрерывной кривой, принадлежащей G.

Связное открытое множество называется областью.

Теорема. Пусть функция f (x) определена и непрерывна на Rn (во всех точках Rn). Тогда множество G точек х, где она удовлетворяет неравенству

f (x) > с (или f (x) < с), какова бы ни была постоянная с, есть открытое множество.

В самом деле, функция F(x) = f(x) - с непрерывна на Rn, и множество всех точек х, где F(x) > 0, совпадает с G. Пусть х0 G, тогда существует шар

| х - х0 | < д,

предел функция переменная непрерывность

на котором F(x) > 0, т.е. он принадлежит к G и точка х0 G - внутренняя для G.

Случай с f (x) < с доказывается аналогично.

Таким образом, функция нескольких переменных f (М) называется непрерывной в точке М0, если она удовлетворяет следующим трем условиям:

а) функция f (М) определена в точке М0 и вблизи этой точки;

б) существует предел ;

в)

Если в точке М0 нарушено хотя бы одно из этих условий, то функция в этой точке терпит разрыв. Точки разрыв могут образовывать линии разрыва, поверхность разрыва и т. д. Функция f (М) называется непрерывной в области G, если она непрерывна в каждой точке этой области.

В курсе математического анализа понятие предела является одним из основных. С помощью предела вводятся производная и определенный интеграл; пределы же являются основным средством в построении теории рядов. Понятие предела, впервые появившееся в 17 веке в работах Ньютона, используется и получает дальнейшее развитие в теории рядов. В этом разделе анализа исследуются вопросы, связанные с суммой бесконечной последовательности величин (как постоянных, так и функций).

Непрерывность функции дает представление о ее графике. Это означает, что график есть сплошная линия, а не состоит из отдельных разрозненных участков. Это свойство функции находит широкое применение в сфере экономики.

Поэтому понятия предела и непрерывности играют важную роль в исследовании функций нескольких переменных.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие функции нескольких переменных. Аргументы, частное значение и область применения функции. Рассмотрение функции двух и трех переменных. Предел функции нескольких переменных, теорема. Главная сущность непрерывности функции нескольких переменных.

    реферат [86,3 K], добавлен 30.10.2010

  • Понятие, предел и непрерывность функции двух переменных. Частные производные первого порядка, нахождение полного дифференциала. Частные производные высших порядков и экстремум функции нескольких переменных. Необходимые условия существования экстремума.

    контрольная работа [148,6 K], добавлен 02.02.2014

  • Понятие функции двух и более переменных, ее предел и непрерывность. Частные производные первого и высших порядков. Определение полного дифференциала. Необходимые и достаточные условия существования экстремума и его нахождение на условном множестве.

    реферат [145,4 K], добавлен 03.08.2010

  • Понятия зависимой, независимой переменных, области определения функции. Примеры нахождения области функции. Примеры функций нескольких переменных: линейная, квадратическая, функция Кобба-Дугласа. Построение графика и линии уровня функции двух переменных.

    презентация [104,8 K], добавлен 17.09.2013

  • Определение пределов функции с помощью Mathcad. Доказать, что предел данной функции в указанной точке не существует. Построение ее графика в окрестности указанной точки. Вычисление производных функции по определению в произвольной или фиксированной точке.

    лабораторная работа [718,5 K], добавлен 25.12.2011

  • Понятие предела функции и основные требования, предъявляемые к нему, геометрический смысл. Методика определения данной геометрической категории в заданной точке при различных условиях. Вычисление ординат графиков. Возрастание по абсолютной величине.

    презентация [902,2 K], добавлен 21.09.2013

  • Функция многих переменных. Предел и непрерывность функции многих переменных. Частные производные. Дифференцируемость функции. Производная в направлении. Градиент. Локальные экстремумы. Интегральное исчисление функций. Неопределённный интеграл.

    курс лекций [309,0 K], добавлен 08.04.2008

  • Определение предела функции в точке. Понятие односторонних пределов. Геометрический смысл предела функции при х, стремящемся в бесконечности. Основные теоремы о пределах. Вычисление пределов и раскрытие неопределенностей. Первый замечательный предел.

    презентация [292,4 K], добавлен 14.11.2014

  • Применение второго замечательного предела для раскрытия неопределенности. Точки разрыва непрерывной функции 1-го и 2-го рода. Условия ее непрерывности в точке, интервале и на отрезке. Теоремы Вейерштрасса и Больцано-Коши. Обращение функции в ноль.

    презентация [222,8 K], добавлен 20.03.2014

  • Определение второго замечательного предела. Понятие бесконечно малых функций. Математическое описание непрерывности зависимости одной переменной величины от другой в точке. Точки разрыва функции. Свойства и непрерывность ее в интервале и на отрезке.

    презентация [314,4 K], добавлен 14.11.2014

  • Предел для функции действительного аргумента и для функции комплексного переменного. Формулировка необходимого условия дифференцируемости функции комплексного переменного (условие Коши-Римана). Понятия и примеры правильных и особых точек функции.

    презентация [74,9 K], добавлен 17.09.2013

  • Нахождение области определения, области значений функции, построение ее графиков с помощью преобразований кривых. График линейной функции с областью значений - все положительные действительные числа. Исследование функции на непрерывность. Расчет предела.

    контрольная работа [922,4 K], добавлен 13.12.2012

  • Предел отношения приращения функции к приращению независимого аргумента, когда приращение аргумента стремится к нулю. Обозначения производной. Понятие дифференцирования функции производной и ее геометрический смысл. Уравнение касательной к кривой.

    презентация [246,0 K], добавлен 21.09.2013

  • Элементы аналитической геометрии и линейной алгебры. Методы построения графика функции. Предел и непрерывность функции. Дифференциальное исчисление функции одной переменной. Определители и системы уравнений. Построение прямой и плоскости в пространстве.

    методичка [1,0 M], добавлен 24.08.2009

  • Направление, задаваемое единичным вектором. Предел отношения приращения функции в направлении к величине перемещения. Скалярное произведение в координатах. Градиент функции в точке. Направление максимальной скорости изменения функции в данной точке.

    презентация [91,0 K], добавлен 17.09.2013

  • Расчет частных производных первого порядка. Поиск и построение области определения функции. Расчет полного дифференциала. Исследование функции на экстремум. Поиск наибольшего и наименьшего значения функции в замкнутой области. Производные второго порядка.

    контрольная работа [204,5 K], добавлен 06.05.2012

  • Определение точки экстремума для функции двух переменных. Аналог теоремы Ферма. Критические, стационарные точки. Теорема "Достаточное условие экстремума", доказательство. Схема исследования функции нескольких переменных на экстремум, практический пример.

    презентация [126,2 K], добавлен 17.09.2013

  • Область определения и свойства функции (четность, нечетность, периодичность). Точки пересечения функции с осями координат. Непрерывность функции. Характер точек разрыва. Асимптоты. Экстремумы функции. Исследование функции на монотонность. Точки перегиба.

    презентация [298,3 K], добавлен 11.09.2011

  • Нахождение экстремума функции нескольких переменных не на всей области определения, а на множестве, удовлетворяющему некоторому условию. Практический пример нахождения точки максимума и минимума функции. Главные особенности метода множителей Лагранжа.

    презентация [112,6 K], добавлен 17.09.2013

  • Основные свойства функций, для которых существуют пределы. Понятие бесконечно малых величин и их суммы. Предел алгебраической суммы, разности и произведения конечного числа функций. Предел частного двух функций. Нахождение предела сложной функции.

    презентация [83,4 K], добавлен 21.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.