История развития единиц величин

Международная система единиц. Величины, с которыми знакомятся дошкольники, и их характеристики. Приобретение практических умений и навыков, необходимых человеку в повседневной деятельности. Создание метрической системы мер. Линейные размеры предмета.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 20.10.2013
Размер файла 121,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования Московской области

Государственное бюджетное образовательное учреждение среднего профессионального образования

Истринский профессиональный колледж Московской области

Реферат

по математике

История развития единиц величин

Выполнила

студентка 1 курса 1 «А» группы

Копчёнова О.Ю.

Специальность 050146

«Преподавание в начальных классах»

Дневная форма обучения.

Руководитель:

Преподаватель математики

Филатова И.И.

Истра, 2013 г.

Содержание

Введение

1. История развития единиц величин

2. Международная система единиц

3. Величины, с которыми знакомятся дошкольники, и их характеристики

Список использованной литературы

Введение

Через понятие величины описываются реальные свойства предметов и явлений, происходит познание окружающей действительности; знакомство с зависимостями между величинами помогает создать у детей целостные представления об окружающем мире; изучение процесса измерения величин способствует приобретению практических умений и навыков, необходимых человеку в его повседневной деятельности. Кроме того знания и умения, связанные с величинами, являются основой для дальнейшего изучения математики.

1. История развития единиц величин

Человек давно осознал необходимость измерять разные величины, причем измерять как можно точнее. Основой точных измерений являются удобные, четко определенные единицы величин и точно воспроизводимые эталоны (образцы) этих единиц. В свою очередь, точность эталонов отражает уровень развития науки, техники и промышленности страны, говорит о ее научно-техническом потенциале.

В истории развития единиц величин можно выделить несколько периодов.

Самым древним является период, когда единицы длины отождествлялись с названием частей человеческого тела. Так, в качестве единиц длины применяли ладонь (ширина четырех пальцев без большого), локоть (длина локтя), фут (длина ступни), дюйм (длина сустава большого пальца) и др. В качестве единиц площади в этот период выступали: колодец (площадь, которую можно полить из одного колодца), соха или плуг (средняя площадь, обработанная за день сохой или плугом) и др.

В XIV--XVI вв. появляются в связи с развитием торговли так называемые объективные единицы измерения величин. В Англии, например, дюйм (длина трех приставленных друг к другу ячменных зерен), фут (ширина 64 ячменных зерен, положенных бок о бок).

В качестве единиц массы были введены гран (масса зерна) и карат (масса семени одного из видов бобов).

Следующий период в развитии единиц величин -- введение единиц, взаимосвязанных друг с другом. В России, например, такими были единицы длины миля, верста, сажень и аршин; 3 аршина составляли сажень, 500 саженей -- версту, 7 верст -- милю.

Однако связи между единицами величин были произвольными, свои меры длины, площади, массы использовали не только отдельные государства, но и отдельные области внутри одного и того же государства. Особый разнобой наблюдался во Франции, где каждый феодал имел право в пределах своих владений устанавливать свои меры. Такое разнообразие единиц величин тормозило развитие производства, мешало научному прогрессу и развитию торговых связей.

Новая система единиц, которая впоследствии явилась основой для международной системы, была создана во Франции в конце XVIII века, в эпоху Великой французской революции. В качестве основной единицы длины в этой системе принимался метр -- одна сорокамиллионная часть длины земного меридиана, проходящего через Париж.

Кроме метра, были установлены еще такие единицы:

ар -- площадь квадрата, длина стороны которого равна 10 м;

литр -- объем и вместимость жидкостей и сыпучих тел, равный объему куба с длиной ребра 0,1 м;

грамм -- масса чистой воды, занимающая объем куба с длиной ребра 0,01 м.

Были введены также десятичные кратные и дольные единицы, образуемые с помощью приставок: мириа (104), кило (103), гекто (102), дека (101), деци (10 -1), санти (10 -2), милли (10 -3). Единица массы килограмм был определен как масса 1 дм3 воды при температуре 4 °С. Так как все единицы величин оказались тесно связанными с единицей длины метром, то новая система величин получила название метрической системы мер.

В соответствии с принятыми определениями были изготовлены платиновые эталоны метра и килограмма:

метр представляла линейка с нанесенными на ее концах штрихами;

килограмм -- цилиндрическая гиря.

Эти эталоны передали на хранение Национальному архиву Франции, в связи с чем они получили названия «архивный метр» и «архивный килограмм».

Создание метрической системы мер было большим научным достижением -- впервые в истории появились меры, образующие стройную систему, основанные на образце, взятом из природы, и тесно связанные с десятичной системой счисления.

Но уже скоро в эту систему пришлось вносить изменения.

Оказалось, что длина меридиана была определена недостаточно точно. Более того, стало ясно, что по мере развития науки и техники значение этой величины будет уточняться. Поэтому от единицы длины, взятой из природы, пришлось отказаться. Метром стали считать расстояние между штрихами, нанесенными на концах архивного метра, а килограммом -- массу эталона архивного килограмма.

В России метрическая система мер начала применяться наравне с русскими национальными мерами начиная с 1899 года, когда был принят специальный закон, проект которого был разработан выдающимся русским ученым Д.И. Менделеевым. Специальными постановлениями Советского государства был узаконен переход на метрическую систему мер сначала РСФСР (1918 г.), а затем и полностью СССР (1925 г.).

2. Международная система единиц

Международная система единиц (СИ) -- это единая универсальная практическая система единиц для всех отраслей науки, техники, народного хозяйства и преподавания. Так как потребность в такой системе единиц, являющейся единой для всего мира, была велика, то за короткое время она получила широкое международное признание и распространение во всем мире.

В этой системе семь основных единиц (метр, килограмм, секунда, ампер, кельвин, моль и кандела) и две дополнительные единицы (радиан и стерадиан).

3. Величины, с которыми знакомятся дошкольники, и их характеристики

Цель дошкольной подготовки -- познакомить детей со свойствами объектов, научить дифференцировать их, выделяя те свойства, которые принято называть величинами, познакомить с самой идеей измерения посредством промежуточных мер и с принципом измерения величин.

Длина -- это характеристика линейных размеров предмета. В дошкольной методике формирования элементарных математических представлений принято рассматривать «длину» и «ширину» как два разных качества предмета. Однако в школе оба линейных размера плоской фигуры чаще называют «длиной стороны», то же самое название используют при работе с объемным телом, имеющим три измерения.

Длины любых предметов можно сравнивать:

на глаз;

приложением или наложением (совмещением).

При этом всегда можно либо приблизительно, либо точно определить, «на сколько одна длина больше (меньше) другой».

Масса -- это физическое свойство предмета, измеряемое с помощью взвешивания. Следует различать массу и вес предмета. С понятием вес предмета дети знакомятся в 7 классе в курсе физики, поскольку вес -- это произведение массы на ускорение свободного падения. Терминологическая некорректность, которую позволяют себе взрослые в обиходе, часто путает ребенка, поскольку мы иногда, не задумываясь, говорим: «Вес предмета 4 кг». Само слово «взвешивание» подталкивает к употреблению в речи слова «вес». Однако в физике эти величины различаются: масса предмета всегда постоянна -- это свойство самого предмета, а вес его меняется в случае изменения силы притяжения (ускорения свободного падения).

Для того чтобы ребенок не усваивал неправильную терминологию, которая будет путать его в дальнейшем в начальной школе, следует всегда говорить: масса предмета.

Кроме взвешивания, массу можно приблизительно определить прикидкой на руке («барическое чувство»). Масса -- сложная с методической точки зрения категория для организации занятий с дошкольниками: ее нельзя сравнить на глаз, приложением или измерить промежуточной меркой. Однако «барическое чувство» есть у любого человека, и на его использовании можно построить некоторое количество полезных для ребенка заданий, подводящих его к пониманию смысла понятия массы.

Основная единица массы - килограмм. Из этой основной единицы образуются другие единицы массы: грамм, тонна и пр.

Площадь -- это количественная характеристика фигуры, указывающая на ее размеры на плоскости. Площадь принято определять у плоских замкнутых фигур. Для измерения площади в качестве промежуточной мерки можно использовать любую плоскую форму, плотно укладывающуюся в данную фигуру (без зазоров). В начальной школе детей знакомят с палеткой -- кусочком прозрачного пластика с нанесенной на него сеткой квадратов равной величины (обычно размером 1 см2). Накладывание палетки на плоскую фигуру дает возможность подсчитать примерное количество поместившихся в ней квадратов для определения ее площади.

В дошкольном возрасте дети сравнивают площади предметов, не называя этот термин, с помощью наложения предметов или визуально, путем сопоставления занимаемого ими места на столе, земле. Площадь -- удобная с методической точки зрения величина, поскольку позволяет организацию разнообразных продуктивных упражнений по сравнению и уравниванию площадей, определению площади путем укладывания промежуточных мер и через систему заданий на равносоставленность. Например:

1) сравнение площадей фигур методом наложения:

Площадь треугольника меньше площади круга, а площадь круга больше площади треугольника;

2) сравнение площадей фигур по количеству равных квадратов (или любых других мерок);

Размещено на http://www.allbest.ru/

Площади всех фигур равны, так как фигуры состоят 4 равных квадратов.

При выполнении таких заданий дети в непрямой форме знакомятся с некоторыми свойствами площади:

Площадь фигуры не изменяется при изменении ее положения на плоскости.

Часть предмета всегда меньше целого.

Площадь целого равна сумме площадей составляющих его частей.

Эти задания также формируют у детей понятие о площади как о числе мер, содержащихся в геометрической фигуре.

Емкость -- это характеристика мер жидкости. В школе емкость рассматривают эпизодически на одном уроке в 1 классе. Знакомят детей с мерой емкости -- литром для того, чтобы в дальнейшем использовать наименование этой меры при решении задач. Традиция такова, что с понятием объем в начальной школе емкость не связывают.

Время -- это длительность протекания процессов. Понятие времени более сложное, чем понятие длины и массы. В обыденной жизни время -- это то, что отделяет одно событие от другого. В математике и физике время рассматривают как скалярную величину, потому что промежутки времени обладают свойствами, похожими на свойства длины, площади, массы:

Промежутки времени можно сравнивать. Например, на один и тот же путь пешеход затратит больше времени, чем велосипедист.

Промежутки времени можно складывать. Так, лекция в колледже длится столько же времени, сколько два урока в школе.

Промежутки времени можно вычитать, умножать на положительное действительное число.

Промежутки времени измеряют. Но процесс измерения времени отличается от измерения длины. Для измерения длины можно многократно использовать линейку, перемещая ее от точки к точке. Промежуток времени, принятый за единицу, может быть использован лишь один раз. Поэтому единицей времени должен быть регулярно повторяющийся процесс. Такой единицей в Международной системе единиц названа секунда. Наряду с секундой используются и другие единицы времени: минута, час, сутки, год, неделя, месяц, век.. Такие единицы, как год и сутки, были взяты из природы, а час, минута, секунда придуманы человеком.

Первые представления о времени формируются в дошкольном возрасте: смена времен года, смена дня и ночи, дети знакомятся с последовательностью понятий: вчера, сегодня, завтра, послезавтра.

К началу школьного обучения у детей формируются представления о времени в результате практической деятельности, связанной с учетом длительности процессов: выполнение режимных моментов дня, ведение календаря погоды, знакомство с днями недели, их последовательностью, дети знакомятся с часами и ориентированием по ним в связи с посещением детского сада. Вполне возможно познакомить детей с такими единицами времени, как год, месяц, неделя, сутки, уточнить представление о часе и минуте и их длительности в сравнении с другими процессами. Инструментом измерения времени являются календарь и часы.

Скорость -- это путь, пройденный телом за единицу времени.

Все эти величины известны нам с самого рождения. В процессе всей жизни мы сталкиваемся с этими величинами. Для успешного владения и применения их на практике, необходимо еще в школе уделять им особое внимание в их изучении.

Список использованной литературы

единица длина метрический линейный

1. Единицы физических величин, Чертов А.Г., 1977.

2. http://dic.academic.ru/dic.nsf/enc_colier.

3. http://ru.wikipedia.org.

Размещено на Allbest.ru

...

Подобные документы

  • Описания парижской палаты мер и весов, хранилища эталонов, склада образцов, собрания канонов. Характеристика метрической системы мер, единиц измерения массы, длины, объема жидких и сыпучих тел. Исследование деятельности международного бюро мер и весов.

    реферат [164,9 K], добавлен 13.12.2011

  • Дискретные системы двух случайных величин. Композиция законов распределения, входящих в систему. Определение вероятности попадания случайной величины в интервал; числовые характеристики функции; математическое ожидание и дисперсия случайной величины.

    контрольная работа [705,1 K], добавлен 22.11.2013

  • Усвоение знаний, умений и навыков. Понятие и сущность знаний. Сущность умений и навыков. Проверка и учет знаний, умений и навыков учащихся по математике в начальных классах. Роль и функции проверки. Способы проверки и учета знаний, умений по математике.

    курсовая работа [77,5 K], добавлен 09.10.2008

  • События и случайные величины. Функция распределения и ее характерные свойства. Сущность и определение основных числовых характеристик случайных величин: математическое ожидание, дисперсия, моменты. Критерии и факторы, влияющие на их формирование.

    контрольная работа [118,5 K], добавлен 30.01.2015

  • Классическое, статистическое и геометрическое определения вероятности. Дискретные случайные величины и законы их распределения. Числовые характеристики системы случайных величин. Законы равномерного и нормального распределения систем случайных величин.

    дипломная работа [797,0 K], добавлен 25.02.2011

  • Система линейных уравнений. Векторная алгебра, линейные операции для векторов, векторное (линейное) пространство. Случайные события и величины, плотность распределения вероятности, математическое ожидание, дисперсия, среднее квадратическое отклонение.

    методичка [232,1 K], добавлен 18.05.2010

  • Изучение численных методов приближенного решения нелинейных систем уравнений. Составление на базе вычислительных схем алгоритмов; программ на алгоритмическом языке Фортран - IV. Приобретение практических навыков отладки и решения задач с помощью ЭВМ.

    методичка [150,8 K], добавлен 27.11.2009

  • Понятие и направления исследования случайных величин в математике, их классификация и типы: дискретные и непрерывные. Их основные числовые характеристики, отличительные признаки и свойства. Законы распределения случайных величин, их содержание и роль.

    презентация [1,4 M], добавлен 19.07.2015

  • Математическое ожидание случайной величины. Свойства математического ожидания, дисперсия случайной величины, их суммы. Функция от случайных величин, ее математическое ожидание. Коэффициент корреляции, виды сходимости последовательности случайных величин.

    лекция [285,3 K], добавлен 17.12.2010

  • Математическое ожидание дискретной случайной величины, его свойства и определение. Дисперсия и формула для ее вычисления. Среднее квадратическое отклонение. Ковариация и коэффициент корреляции. Коррелированные и некоррелированные случайные величины.

    курсовая работа [133,7 K], добавлен 05.06.2011

  • Свойства бесконечно малых величин. Произведение бесконечно малой величины на ограниченную функцию. Предел функции f(x) при x, стремящимся к бесконечности: теорема и ее доказательство. Пример решения функции и предел отношения двух малых величин.

    презентация [61,7 K], добавлен 21.09.2013

  • Пространства элементарных событий. Совместные и несовместные события. Функция распределения системы случайных величин. Функции распределения и плотности распределения отдельных составляющих системы случайных величин. Условные плотности распределения.

    задача [45,4 K], добавлен 15.06.2012

  • Использование предками длины рук и ног при счете и измерении расстояний. Перечень единиц измерения Древней Руси. Определение размеров перста, вершка, дюйма, пяди, локтя и аршина. Практическое применение мер длины в задачах. Расчет величины сажени.

    презентация [2,7 M], добавлен 06.02.2013

  • Описание случайных ошибок методами теории вероятностей. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон распределения. Понятие функции случайной величины. Центральная предельная теорема. Закон больших чисел.

    реферат [146,5 K], добавлен 19.08.2015

  • Пространство элементарных событий, математическое ожидание. Функции распределения и плотности распределения составляющих системы случайных величин. Числовые характеристики системы. Условия нормировки плотности системы случайных непрерывных величин.

    практическая работа [103,1 K], добавлен 15.06.2012

  • Сущность выборочного исследования. Способы отбора единиц в выборочную совокупность. Средняя и предельная ошибка для показателей средней величины и показателей доли. Определение необходимого объема выборки при заданной предельной ошибке среднего значения.

    презентация [108,7 K], добавлен 16.03.2014

  • Введение понятия переменной величины. Развитие интегральных и дифференциальных методов. Математическое обоснование движения планет. Закон всемирного тяготения Ньютона. Научная школа Лейбница. Теория приливов и отливов. Создание математического анализа.

    презентация [252,6 K], добавлен 20.09.2015

  • Двумерная функция распределения вероятностей случайных величин. Понятие условной функции распределения и плотности распределения вероятностей. Корреляция двух случайных величин. Система произвольного числа величин, условная плотность распределения.

    реферат [325,3 K], добавлен 23.01.2011

  • Понятия теории вероятностей и математической статистики, применение их на практике. Определение случайной величины. Виды и примеры случайных величин. Закон распределения дискретной случайной величины. Законы распределения непрерывной случайной величины.

    реферат [174,7 K], добавлен 25.10.2015

  • Развитие математики переменных величин: создание аналитической геометрии, дифференциального и интегрального исчисления. Значение появления книги Декарта "Геометрия" в создании математики переменных величин. Становление математики в ее современном виде.

    реферат [25,9 K], добавлен 30.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.