Диалектика развития понятия функции

История возникновения понятия функции, его исследования ученым Лейбницем. Сущность задачи о колебании струны, ее проблематика решения. Характеристика и основные возможности открытия Фурье. Сущность функционала и оператора, их главные задачи и принципы.

Рубрика Математика
Вид доклад
Язык русский
Дата добавления 29.10.2013
Размер файла 50,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Доклад для конференции по математике на тему: «Диалектика развития понятия функции»

Понятие функции является одним из основных понятии математики вообще и школьной математики в частности. Оно не возникло сразу в таком виде, как мы им пользуемся сейчас, а как и другие фундаментальные понятия прошло длинный путь диалектического и исторического развития. Идея функциональной зависимости восходит к древнегреческой математике. Например, изменение площади, объема фигуры в зависимости от изменения ее размеров Однако, древними греками идея функциональной зависимости осознавалась интуитивно.

Уже в 16 - 17 в. в, техника, промышленность, мореходство поставили перед математикой задачи, которые нельзя было решить имеющимися методами математики постоянных величин. Нужны были новые математические методы, отличные от методов элементарной математики.

Впервые термин "функция" вводит в рассмотрение знаменитый немецкий математик и философ Лейбниц в 1694 г. Однако, этот термин /определения он не дал вообще/ он употребляет в узком смысле, понимая под функцией изменение ординаты кривой в зависимости от изменения ее абсциссы. Таким образом, понятие функции носит у него "геометрический налет".

Ученик Лейбница Иоганн Бернулли пошел дальше своего учителя. Он дает более общее определение функции, освобождая последнее от геометрических представлений и терминов: "функцией переменной величины называется количество, образованное каким угодно способом из этой величины и постоянных".

Под "каким угодно способом" во времена Бернулли понимали арифметические операции, извлечение корня, тригонометрические и обратные им функции; показательные, логарифмированные "операции", а также их различные комбинации.

Из сказанного выше видно, что с современной точки зрения под функцией Бернулли понимал один из способов ее задания и отождествлял понятие функции со способом задания. То есть такое определение тоже было значительно узким. Так под него не попадали такие зависимости, как иначе говоря, по определению Бернулли, функцией не считались функциональные зависимости /с современной точки зрения/, заданные на разных участках области определения различными аналитическими выражениями.

Однако, определение функции, данное Бернулли, устроило математиков, т.к. оно охватывало в то время все функции, какие были в употреблении и изучались математиками. Следует заметить, что подход к определению функции как к аналитическому выражению, которым оно задано, долго господствовал в математике вплоть до 18 в. Это определение полностью признавал и великий Эйлер.

Вместе с тем в математике все больше и больше накапливались примеры таких функций, какие не подходили под соответствующее определение. Отказать в существовании таким величинам было нельзя, т.к. они выражали определенные жизненные закономерности, но и признать их функциями было тоже нельзя, т.к. они не подходили под существующее определение. Все крупнейшие математики, в том числе и Эйлер, видели это и понимали, что нужно отказаться от существующего определения и расширить понятие функции, В этом направлении начали принимать робкие попытки Эйлер, Бернулли и др.

Вопрос о расширении понятия функции особенно остро встал в связи с решением знаменитой задачи о колебании струны. Суть этой задачи состоит в следующем: упругая струна закреплена в 2-х точках оси Ох. Затем ее оттягивают /придавая ей определенную форму/ и отпускают без начальной скорости. Струна начинает колебаться. Требуется определить ее форму в последующий момент времени.

В решении этой задачи приняли участие все крупнейшие математики того времени Эйлер, братья Бернулли, Даламбер, Лагранж, позже молодой Фурье и др. Возник спор - можно ли считать функцией решение уравнения колебания струны. Одни утверждали, что нельзя, т, к. это решение не подходило под существующее определение функции, другие считали - можно, но для этого надо расширить понятие функции. Спор длился около 40 лет и особенно острым оказался между Эйлером и Даламбером.

Предлагались различные способы записи искомой функции: в виде двух функций, задающих положение струны каждая на своем участке, или в виде -ного ряда:

U(x) = a1sin+a2sin+...+ansin+...

Но и Эйлер и Даламбер отвергли эти предложения, так как ни одна из предложенных функций не попадала под существовавшее тогда определение функции.

Итак, до возникновения спора о колебании струны все математики, современники Эйлера, в том числе и сам Эйлер, были далеки от современного понятия функции. Они связывали с понятием функции определенную формулу или аналитическое выражение, каким она задана.

При этом совершенно не представляли себе даже того, что одна и та же функция может изображаться и несколькими формулами, в зависимости от того, на каком промежутке изменения аргумента мы ее рассматриваем /кусочное задание/. Такое представление о функции и породило спор в вопросах колебания струны, длившейся в математике более 40 лет.

Окончательный разрыв между пониманиями функции и ее аналитического выражения произошел в начале 19 в., после того как французский математик Фурье показал, что функции заданные на разных участках области определения по-разному можно вообще говоря представить во всей области задания в виде суммы одного и того же _ного ряда. Таким образом, несущественно одним или многими выражениями задана функция суть лишь в том, какие значения принимает одна величина при заданных значениях другой величины. Открытие Фурье нанесло сокрушительный удар по догмам 18 в.

Сейчас мы знаем четыре способа задания функций: аналитический, графический, табличный и словесный, причем точно различаем само понятие функции и способы ее задания. У нас с вами функция

f(x) =

не вызывает никаких нареканий, а у математиков XVII-XVIII вв. велись острейшие споры можно ли функцию записанную не конечной формулой, а бесконечным рядом считать функцией или нет. На протяжении двух веков этот вопрос оставался открытым, а данная функция функцией не считалась. После открытия Фурье ситуация резко поменялась.

В результате Эйлер и другие крупнейшие математики пришли к выводу, что существующее понятие функции /класс аналитически изображаемых функций/ существенно уже класса всех функций вообще. Поэтому необходимо расширить это понятие.

Более широкое и уже приближающееся к современному понятие функции было дано в 1834 г. Лобачевским, он указывал на необходимость задания правила /условия/, позволяющего испытывать каждое значение х. Наконец, в 1837 г. Дирихле дал наиболее общее /классическое/ определение функции, охватывающее все содержание математики: у есть функция от х, если всякому значению х соответствует вполне определенное значение у, причем совершенно неважно, каким именно способом установлено указанное соответствие.

В современных терминах это определение связано с понятием множества и звучит так: «Функция есть произвольный способ отображения множества А = {а} во множество В = {в}, по которому каждому элементу аА поставлен в соответствие определенный элемент вВ. Уже в этом определении не накладывается никаких ограничений на закон соответствия /этот закон может быть задан Формулой, таблицей, графиком, словесным описанием/. Главное в этом определении: аА!bB. Под элементами множеств А и В понимаются при этом элементы произвольной природы.

Это определение вполне устраивало всех математиков: под него попадали все функциональные зависимости в то время известные в математике. Оно столь широко, что им действительно охватывается все содержание и современной математики. Более того, с точки зрения общего учения о функциях та или иная отдельная математическая дисциплина характеризуется типом рассматриваемых в ней функций.

Так, в анализе рассматриваются функции, отображающие одно числовое множество на другое числовое множество. Если это некоторые множества действительных чисел, то имеем функцию действительной /вещественной/ переменной.

Если же это некоторые множества комплексных чисел, то имеем комплексную функцию комплексной переменной.

В вариационном исчислении основным понятием является функционал. Функционал - это соответствие, которое каждой функции из некоторого класса /который называется областью определения функции/ сопоставляет определенное число, иначе функционал отображает множество функций во множество чисел. Например,

лейбниц колебание фурье функционал

L = ,

где у = у(х) - спрямляемая плоская кривая J =

В операционном исчислении основным объектом изучения является оператор. Оператор некоторой функции ставит в соответствие другую функцию /причем функции здесь являются элементами множеств/. Например, оператор дифференцирования переводит всякую дифференцируемую функцию f одного вещественного переменного в производную f.

В теории чисел рассматриваются так называемые арифметические функции, т.е. функции, принимающие лишь целочисленные значения. Такие функции могут быть заданы или на множестве N /например, (n) и S(n) - выражающие число и сумму делителей числа n/, или на множестве R /например, {х} и [x] - дробная часть числа и наибольшее целое число, не превосходящее действительное число Х.

Преобразования, составляющие содержание геометрии, можно также рассматривать с точки зрения общего понятия функции. Здесь таким образом изучаются точечные соответствия, т.е. функции, отображающие геометрические образы. В связи с характером этих отображений классифицируется содержание геометрия. В элементарной геометрии изучаются движение и подобие, далее идут аффинная и проективная геометрия, конформная геометрия /характеризуемая сохранением углов при рассматриваемых в ней отображениях/, наконец, топология /изучающая в общем виде непрерывные отображения/ и т.д.

Итак, резюмируя сказанное выше, отметим, что понятие функции, оформившееся под влиянием спора о колебании струны, данное окончательно Дирихле, охватывает все содержание современной математики. Однако, развитие этого понятия не прекратилось и в настоящее время. Оно происходит внутри этого понятия в различных направлениях.

Размещено на Allbest.ru

...

Подобные документы

  • Модельная задача уравнения колебаний струны и деформации системы из трех струн. Вариационные методы решения: экстремум функционала, пробные функции, метод Ритца. Подпространства сплайнов и тестирование программы решения системы алгебраических уравнений.

    дипломная работа [1,1 M], добавлен 29.06.2012

  • Понятие функционала и оператора. Задачи, приводящие к экстремуму функционала, и необходимые условия его минимума. Связь между вариационной и краевой задачами. Функционалы, зависящие от нескольких функций. Вариационные задачи с подвижными границами.

    курсовая работа [313,3 K], добавлен 23.05.2010

  • Особенности выполнения задачи минимизации функционала. Свойства билинейной формы. Формулирование обобщенного способа решения вариационной задачи для краевых задач с самосопряженным дифференциальным оператором (вследствие квадратичности функционала).

    презентация [79,5 K], добавлен 30.10.2013

  • Понятия и термины вариационного исчисления. Понятие функционала, его первой вариации. Задачи, приводящие к экстремуму функционала, условия его минимума. Прямые методы вариационного исчисления. Практическое применение метода Ритца для решения задач.

    курсовая работа [1,3 M], добавлен 08.04.2015

  • Алгоритм введения понятия ряда Фурье, опирающийся на моделирование физических задач в теоретическом курсе высшей математики для студентов физико-математических и инженерно-технических специальностей вузов. Функции и свойства рядов, их физический смысл.

    курсовая работа [1,8 M], добавлен 20.05.2015

  • Постановка задачи коммивояжера и основные алгоритмы решения. Маршруты и пути. Понятия транспортной сети. Понятие увеличивающая дуга, цепь, разрез. Алгоритм Флойда-Уоршелл. Решение задачи аналитическим методом. Создание приложения для решения задачи.

    курсовая работа [541,3 K], добавлен 08.10.2015

  • Доказательство существования или отсутствия алгоритма для решения поставленной задачи. Определение алгоритмической неразрешимости задачи. Понятия суперпозиции функций и рекурсивных функций. Анализ схемы примитивной рекурсии и операции минимизации.

    курсовая работа [79,5 K], добавлен 12.07.2015

  • Разложение в ряд Фурье. Определение функции и нахождение коэффициентов разложения. Проведение замены в интеграле. Условия теоремы о разложении функции в ряд Фурье. Примеры взятия интеграла по частям. Разложение в ряд Фурье четных и нечетных функций.

    презентация [73,1 K], добавлен 18.09.2013

  • Общее определение коэффициентов по методу Эйлера-Фурье. Ортогональные системы функций. Интеграл Дирихле, принцип локализации. Случай непериодической функции, произвольного промежутка, четных и нечетных функций. Примеры разложения функций в ряд Фурье.

    курсовая работа [296,3 K], добавлен 12.12.2010

  • Различные трактовки понятия функции в школьном курсе математики. Функция и задание ее аналитическим выражением. Область определения функции и область значений функции. Тесты по теме "Числовые функции. Четные и нечетные функции. Периодические функции".

    дипломная работа [213,1 K], добавлен 07.09.2009

  • Сущность понятия "симплекс-метод". Математические модели пары двойственных задач линейного программирования. Решение задачи симплексным методом: определение минимального значения целевой функции, построение первого опорного плана, матрица коэффициентов.

    курсовая работа [219,4 K], добавлен 17.04.2013

  • Рассмотрение задач с двойными и тройными интегралами, применение к ним геометрического и симплекс методов решения; описание теоретической и практической части. Разложение функции в ряд Фурье по синусам и определение наибольшего и наименьшего значения.

    курсовая работа [185,1 K], добавлен 28.04.2011

  • Предмет и задачи исследования операций. Основные понятия и принципы исследований, математические модели. Детерминированная задача согласования по определению минимального времени выполнения комплекса работ, времени начала и окончания каждой операции.

    курсовая работа [233,9 K], добавлен 20.11.2012

  • Сущность и содержание, основные понятия и критерии теории графов. Понятие и общее представление о задаче коммивояжера. Описание метода ветвей и границ, практическое применение. Пример использования данного метода ветвей для решения задачи коммивояжера.

    контрольная работа [253,0 K], добавлен 07.06.2011

  • Пространство обобщенных функций. Дифференциальные уравнения в обобщенных функциях. Преобразования Лапласа и Фурье. Обобщенные функции, отвечающие квадратичным формам с комплексными коэффициентами. Нахождение решения в математическом пакете Maple.

    курсовая работа [516,1 K], добавлен 25.06.2013

  • Краткая биографическая справка из жизни Пифагора. Сущность понятия "пифагоровы тройки", простые способы их формирования. Свойства троек, главные их следствия. Решение задачи на нахождение тангенса острого угла. Подсказки для выбора правильной "тройки".

    презентация [498,2 K], добавлен 01.12.2012

  • Условия разложения функций для тригонометрического ряда. Определение коэффициентов разложения с помощью ортогональности систем тригонометрических функций. Понятие периодического продолжения функции, заданной на отрезке. Ряд Фурье функции у=f(x).

    презентация [30,4 K], добавлен 18.09.2013

  • Сущность понятия "дифференциальное уравнение". Главные этапы математического моделирования. Задачи, приводящие к решению дифференциальных уравнений. Решение задач поиска. Точность маятниковых часов. Решение задачи на определение закона движения шара.

    курсовая работа [918,7 K], добавлен 06.12.2013

  • Нахождение решения уравнения с заданными граничными и начальными условиями, система дифференциальных уравнений. Симметричное преобразование Фурье. Решение линейного разностного уравнения. Допустимые экстремали функционала. Уравнение Эйлера-Лагранжа.

    контрольная работа [51,5 K], добавлен 05.01.2016

  • История, понятия и методы решения задач на экстремум. Знаменитые задачи на максимум и минимум: Кеплера, Фаньяно, Дидоны и Ферма–Торричелли–Штейнера. Аналитический и геометрический методы как более подходящие инструменты решения с научной точки зрения.

    курсовая работа [483,0 K], добавлен 10.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.