Каноническая форма записи одношаговых итерационных методов
Характеристика основных определений канонической формы одношаговых итерационных методов. Изучение методов Ричардсона и верхней релаксации. Изучение сходимости стационарных итерационных методов. Применение чебышевского набора параметров многочленов.
Рубрика | Математика |
Вид | презентация |
Язык | русский |
Дата добавления | 30.10.2013 |
Размер файла | 65,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Сущность итерационного метода решения задачи, оценка его главных преимуществ и недостатков. Разновидности итерационных методов решения систем линейных алгебраических уравнений: Якоби, Хорецкого и верхней релаксации, их отличия и возможности применения.
курсовая работа [39,2 K], добавлен 01.12.2009Решение задач линейной алгебры с разреженными матрицами на примере дискретизации уравнения Пуассона. Сущность векторных и матричных норм, основные виды итерационных методов, определение и условия их сходимости. Понятие инвариантных подпространств.
учебное пособие [409,8 K], добавлен 02.03.2010Анализ методов решения систем нелинейных уравнений. Простая итерация, преобразование Эйткена, метод Ньютона и его модификации, квазиньютоновские и другие итерационные методы решения. Реализация итерационных методов с помощью математического пакета Maple.
курсовая работа [820,5 K], добавлен 22.08.2010Характеристика и использование итерационных методов для решения систем алгебраических уравнений, способы формирования уравнений. Методы последовательных приближений, Гаусса-Зейделя, обращения и триангуляции матрицы, Халецкого, квадратного корня.
реферат [60,6 K], добавлен 15.08.2009Обоснование итерационных методов решения уравнений в свертках, уравнений Винера-Хопфа, с парными ядрами, сингулярных интегральных, интегральных с одним и двумя ядрами. Рассмотрение алгоритмов решения. Анализ учебных программ по данной дисциплине.
дипломная работа [2,2 M], добавлен 27.06.2014Характеристика важнейших типов сходимости итерационных последовательностей. Специфические особенности применения метода Ньютона для определения кратных корней. Алгоритм нахождения корней трансцендентного уравнения с использованием метода секущих.
дипломная работа [964,9 K], добавлен 09.06.2019Изучение прямых методов решения вариационных и краевых задач математического анализа. Основные идеи методов Ритца и Галеркина для нахождения приближенного обобщенного решения задачи минимизации функционала. Особенности, сходство и отличие данных методов.
презентация [187,9 K], добавлен 30.10.2013Процесс, описываемый дифференциально-интегральным уравнением. Составление матрицы размерностей параметров процесса. Определение независимых параметров процесса и числа независимых форм записи критериев подобия, критериев подобия в любой форме записи.
курсовая работа [868,6 K], добавлен 25.01.2011Оптимизация как раздел математики, ее определение, сущность, цели, формулировка и особенности постановки задач. Общая характеристика различных методов математической оптимизации функции. Листинг программ основных методов решения задач оптимизации функции.
курсовая работа [414,1 K], добавлен 20.01.2010Особенности решения линейных и нелинейных уравнений. Характеристика и практическое применение и различных методов при решении уравнений. Сущность многочлена Лагранжа и обратного интерполирования. Сравнение численного дифференцирования и интегрирования.
курсовая работа [799,6 K], добавлен 20.01.2010Возникновение и развитие теории динамических систем. Развитие методов реконструкции математических моделей динамических систем. Математическое моделирование - один из основных методов научного исследования.
реферат [35,0 K], добавлен 15.05.2007Формирование функции Лагранжа, условия Куна и Таккера. Численные методы оптимизации и блок-схемы. Применение методов штрафных функций, внешней точки, покоординатного спуска, сопряженных градиентов для сведения задач условной оптимизации к безусловной.
курсовая работа [1,8 M], добавлен 27.11.2012Характеристика основных методов определения высоты физических тел: с помощью вращающейся планки, теней предмета и человека, зеркала, чертежного прямоугольного треугольника. Суть каждого из методов, обоснование расчетов и используемых материалов.
презентация [69,9 K], добавлен 17.04.2011Изучение нестандартных методов решения задач по математике, имеющих широкое распространение. Анализ метода функциональной, тригонометрической подстановки, методов, основанных на применении численных неравенств. Решение симметрических систем уравнений.
курсовая работа [638,6 K], добавлен 14.02.2010Изучение полиномиальных уравнений и путей их решений. Доказательство теорем Безу и Штурма. Ознакомление с правилами использования формул Виета, математических методов Лобачевского, касательных и пропорциональных отрезков для определения корней многочлена.
курсовая работа [782,0 K], добавлен 19.09.2011Построение приближающей функции, используя исходные данные, с помощью методов Лагранжа, Ньютона и Эйткена (простая и упрощенная форма реализации). Алгоритм вычисления интерполяционного многочлена. Сравнение результатов реализации методов в среде Mathcad.
курсовая работа [299,3 K], добавлен 30.04.2011Определение и анализ многошаговых методов, основы их построения, устойчивость и сходимость. Постановка задачи Коши для обыкновенных дифференциальных уравнений. Метод Адамса, значение квадратурных коэффициентов. Применение методов прогноза и коррекции.
контрольная работа [320,8 K], добавлен 13.03.2013Методы решения одного нелинейного уравнения: половинного деления, простой итерации, Ньютона, секущих. Код программы решения перечисленных методов на языке программирования Microsoft Visual C++ 6.0. Применение методов к конкретной задаче и анализ решений.
реферат [28,4 K], добавлен 24.11.2009Обзор адаптивных методов прогнозирования. Построение модели Брауна. Применение методов прогнозирования на примере СПК колхоза "Новоалексеевский" в рамках модели авторегрессии и проинтегрированного скользящего среднего, предложенной Боксом и Дженкинсом.
дипломная работа [9,0 M], добавлен 28.06.2011Методы оценки погрешности интерполирования. Интерполирование алгебраическими многочленами. Построение алгебраических многочленов наилучшего среднеквадратичного приближения. Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений.
лабораторная работа [265,6 K], добавлен 14.08.2010