Теорема гипотез (формула Байеса)
Полная группа несовместных гипотез. Вероятности этих гипотез до опыта. Условные вероятности каждой из них. Теорема об умножении. Формула Байеса. Вероятность вытащить на экзамене шпаргалку незаметно для преподавателя. Статистика запросов кредитов в банке.
Рубрика | Математика |
Вид | презентация |
Язык | русский |
Дата добавления | 01.11.2013 |
Размер файла | 111,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Показатели безотказности как показатели надежности невосстанавливаемых объектов. Классическое и геометрическое определение вероятности. Частота случайного события и "статистическое определение" вероятности. Теоремы сложения и умножения вероятностей.
курсовая работа [328,1 K], добавлен 18.11.2011Опыт со случайным исходом. Статистическая устойчивость. Понятие вероятности. Алгебра событий. Принцип двойственности для событий. Условные вероятности. Формулы сложения и умножения вероятностей. Формула Байеса. Пространство элементарных событий.
реферат [402,7 K], добавлен 03.12.2007Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.
контрольная работа [55,2 K], добавлен 19.12.2013Применение формул и законов теории вероятности при решении задач. Формула Байеса, позволяющая определить вероятность какого-либо события при условии, что произошло другое статистически взаимозависимое с ним событие. Центральная предельная теорема.
курсовая работа [460,7 K], добавлен 04.11.2015Дискретные случайные величины и их распределения. Формула полной вероятности и формула Байеса. Общие свойства математического ожидания. Дисперсия случайной величины. Функция распределения случайной величины. Классическое определение вероятностей.
контрольная работа [33,8 K], добавлен 13.12.2010Порядок составления гипотез и решения задач на вероятность определенных событий. Вычисление вероятности выпадения различных цифр при броске костей. Оценка вероятности правильной работы автомата. Нахождение функции распределения числа попаданий в цель.
контрольная работа [56,6 K], добавлен 27.05.2013Определение числа исходов, благоприятствующих данному событию. Теорема умножения вероятностей и сложения несовместных событий, локальная теорема Лапласа. Расчет среднеквадратического отклонения величин. Несмещенная оценка генеральной средней и дисперсии.
контрольная работа [91,0 K], добавлен 31.01.2011Понятие непрерывности функции. Понятие, физический и геометрический смысл производной. Локальный экстремум и теорема Ферма. Теорема Ролля о нулях производных. Формула конечных приращении Лагранжа. Обобщенная формула конечных приращении (формула Коши).
курсовая работа [812,7 K], добавлен 17.03.2015Статистическое, аксиоматическое и классическое определение вероятности. Дискретные случайные величины. Предельные теоремы Лапласа и Пуассона. Функция распределения вероятностей для многомерных случайных величин. Формула Байеса. Точечная оценка дисперсии.
шпаргалка [328,7 K], добавлен 04.05.2015Определение вероятности выпадения не менее 4-х очков на игральной кости при кидании ее один раз. Определение вероятности изготовления детали (если наудачу взятая сборщиком деталь оказалась отличного качества) первым заводом из используя формулу Байеса.
контрольная работа [11,3 K], добавлен 29.05.2012Возникновение теории вероятности как науки. Классическое определение вероятности. Частость наступления события. Операции над событиями. Сложение и умножение вероятности. Схема повторных независимых испытаний (система Бернулли). Формула полной вероятности.
реферат [175,1 K], добавлен 22.12.2013Сходимость последовательностей случайных величин. Центральная предельная теорема для независимых одинаково распределенных случайных величин. Основные задачи математической статистики, их характеристика. Проверка гипотез по критерию однородности Смирнова.
курсовая работа [1,6 M], добавлен 13.11.2012Классическая формула для вероятности события, отношение благоприятного числа исходов опыта к общему числу всех равновозможных несовместных исходов. Понятие непрерывной и дискретной случайной величины, их числовые характеристики и законы распределения.
презентация [5,5 M], добавлен 19.07.2015Определение числа всех равновероятных исходов испытания. Правило умножения вероятностей независимых событий, их полная система. Формула полной вероятности события. Построение ряда распределения случайной величины, ее математическое ожидание и дисперсия.
контрольная работа [106,1 K], добавлен 23.06.2009Закон распределения случайной величины дискретного типа (принимающей отдельные числовые значения). Предельные теоремы схемы Бернулли. Вычисление вероятности появления события по локальной теореме Муавра-Лапласа. Интегральная формула данной теоремы.
презентация [611,2 K], добавлен 17.08.2015Применение классического определения вероятности для нахождения среди определенного количества деталей заданных комбинаций. Определение вероятности обращения пассажира в первую кассу. Использование локальной теоремы Муавра-Лапласа для оценки отклонения.
контрольная работа [136,0 K], добавлен 23.11.2014Вычисление вероятности непогашения кредита юридическим и физическим лицом, с помощью формулы Байеса. Расчет выборочной дисперсии, его методика, основные этапы. Определение вероятности выпадания белого шара из трех, взятых наудачу, обоснование результата.
контрольная работа [419,7 K], добавлен 11.02.2014Формулировка и доказательство теоремы о сложении вероятностей двух несовместных событий. Следствие теоремы в случае, когда события составляют полную группу несовместных событий, и в случае противоположных событий. Примеры вычисления вероятности событий.
презентация [77,5 K], добавлен 01.11.2013Определение и оценка вероятности наступления заданного события. Методика решения задачи, с использованием теоремы сложения и умножения, формулы полной вероятности или Байеса. Применение схемы Бернулли при решении задач. Расчет квадратического отклонения.
практическая работа [55,0 K], добавлен 23.08.2015Случайное событие и его вероятность. Теорема сложения вероятностей. Закон равномерной плотности вероятности. Случайные величины. Функция распределения и ее свойства. Как наука теория вероятности зародилась в 17 веке.
реферат [96,2 K], добавлен 12.02.2005