Эвклидовы пространства
Анализ способов определения скалярного произведения. Характеристика ортогональных векторов. Линейный оператор как обобщение линейной числовой функции на случай более общего множества аргументов и значений. Знакомство с примерами евклидовых пространств.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 12.11.2013 |
Размер файла | 186,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
скалярной произведение евклидовый пространство
Множество всевозможных систем действительных (комплексных) чисел называется n-мерным действительным (комплексным) пространством и обозначается через . Каждую систему мы будем обозначать одной (жирной) буквой без индекса: и называть точкой или вектором (пространства ). Числа называют координатами точки (вектора) или еще компонентами вектора Две точки считаются равными, если их соответствующие координаты равны. В других случаях и различны . Системы (векторы) , можно складывать, вычитать и умножать на числа - действительные, если есть действительное пространство, и комплексные, ели - комплексное пространство. По определению суммой векторов и называется вектор
,
1)а разностью - вектор
. (2)
Произведением же числа на вектор или вектора на число называется вектор
Наконец, вектор определяется равенством.
Вводится еще понятие нулевого вектора, компоненты которого равны нулю:. Очевидно, выполняются свойства:
1) ,
2) ,
3) ,
4) ,
5) ,
6) ,
7) ,
8) ,
где - числа, а , .
Пространство называется линейным пространством, потому что для него выполняются перечисленные выше свойства 1) - 8), см. ниже замечание 1. Число (неотрицательное)
(3)
называется длиной или нормой вектора в пространстве .
Расстояние между точками и действительного пространства определяется по формуле
. (4)
1.Скалярное произведение
Определение. Пусть X -- векторное пространство (над R). Скалярное произведение в
X -- это функция , обладающая свойствами:
(1) Симметричность: hx; yi = hy; xi для любых x; y 2 X.
(2) Линейность по каждому аргументу (билинейность): hax; yi = ahx; yi, hx + y; zi =
hx; zi + hy; zi для любых x; y; z 2 X, a 2 R. Линейность по второму аргументу следует из симметричности.
(3) Положительная определенность: hx; xi > 0 при всех x 2 X n f0g,
Евклидово пространство -- это векторное пространство с заданным на нем скалярным
произведением.
Примеры. 1. Стандартное скалярное произведение в определяется равенством
где x (x1; : : : ; xn), y = (y1; : : : ; yn).
2. Любое подпространство евклидова пространства -- тоже евклидово пространство (с
тем же скалярным произведением, ограниченным на это подпространство).
3. Пусть X = C[0; 1] -- пространство непрерывных функций [0; 1] ! R. Можно определить скалярное произведение на нем формулой
Пусть Можно определить скалярное произведение формулой
5. Обобщение: зафиксируем числа a; b; c, такие, что a > 0, b > 0, ab c
задает скалярное произведение.
Задача: любое скалярное произведение в представляется в таком виде.
2. Длина вектора
Определение. Пусть X -- евклидово пространство. Длина (норма) вектора определяется равенством
Свойства. 1. Положительность:
2. Симметричность: для любого
3. Положительная однородность:
4. Неравенство , причем равенство достигается тогда и только тогда, когда x и y пропорциональны. (Доказательство: посчитаемдискриминант трехчлена
5. Неравенство треугольника: , причем равенство достигается тогда и только тогда, когда x и y сонаправлены.
6. Скалярное произведение выражается через длину:
3.Ортогональные векторы. Ортонормированный базис
Определение. Два вектора называются ортогональными, если угол междуними равен прямому углу, т.е. .
Обозначение: - векторы и ортогональны.
Определение. Тройка векторов называется ортогональной, если эти векторы попарно ортогональны друг другу, т.е. , .
Определение. Тройка векторов называется ортонормированной, если она ортогональная и длины всех векторов равны единице: .
Замечание. Из определения следует, что ортогональная и, следовательно, ортонормированная тройка векторов является некомпланарной.
Определение. Упорядоченная некомпланарная тройка векторов , отложенных от одной точки, называется правой (правоориентированной), если при наблюдении с конца третьего вектора на плоскость, в которой лежат первые два вектора и , кратчайший поворот первого вектора ко второму происходит против часовой стрелки. В противном случае тройка векторов называется левой (левоориентированной).
Рис.6.
Здесь, на рис.6 изображена правая тройка векторов . На следующем рис.7 изображена левая тройка векторов :
Рис.7.
Определение. Базис векторного пространства называется ортонормированным, если ортонормированная тройка векторов.
Обозначение. В дальнейшем мы будем пользоваться правым ортонормированным базисом , см. следующий рисунок:
Рис.9
Любой вектор можно разложить по этому базису:
.
Оператором называется правило, по которому каждому элементу x некоторого непустого множества X ставится в соответствие единственный элемент y некоторого непустого множества Y. Говорят, что оператор действует из X в Y.
Действие оператора обозначают y = A(x), y -- образ x, x -- прообраз y.
Если каждый элемнт y из Y имеет единственный прообраз x из X, y= A(x), оператор называют взаимно однозначным отображением X в Y или преобразованием X, X -- область определения оператора.
Пусть X и Y два линейные пространства. Оператор A, действующий из X в Y, называется линейным оператором, если для любых двух элементов u и v из X и любого числа б справедливо:
A(u + v) = A(u ) + A(v) , A(б·u) = б· A(u).
Линейное отображение, линейный оператор -- обобщение линейной числовой функции (точнее, функции ) на случай более общего множества аргументов и значений. Линейные операторы, в отличие от нелинейных, достаточно хорошо исследованы, что позволяет успешно применять результаты общей теории, так как их свойства не зависят от природы величин.
Размещено на Allbest
...Подобные документы
Основные определения и свойства скалярного произведения. Необходимое и достаточное условие перпендикулярности векторов. Проекция произвольного вектора. Геометрический смысл скалярного произведения. Проведение нормализации вектора, его направление.
курсовая работа [491,4 K], добавлен 13.01.2014Векторы в трехмерном пространстве. Линейные операции над векторами. Общее понятие про скалярные величины. Проекции векторов, их свойства. Коммутативность скалярного произведения, неравенство Коши-Буняковского. Примеры скалярного произведения векторов.
контрольная работа [605,8 K], добавлен 06.05.2012Понятие собственных векторов и собственных значений, их свойства и характеристики, порядок нахождения собственных векторов оператора. Критерии определения независимости и ортогональности собственных векторов. Факторы и теоремы положительных матриц.
реферат [350,1 K], добавлен 22.04.2010Аксиомы линейного векторного пространства. Произведение любого вектора на число 0. Аксиомы размерности, доказательство теоремы. Дистрибутивность скалярного произведения векторов относительно сложения векторов. Требования, предъявляемые к системе аксиом.
реферат [80,9 K], добавлен 28.03.2014Понятия пространств в изучении компактных операторов. Линейный оператор и линейный функционал, сопряженный оператор, компактный множество. Основные свойства компактного операторов. Компактность оператора Вольтерра. Примеры некомпактного оператора.
реферат [173,1 K], добавлен 27.05.2008Методика расчета скалярного произведения заданных векторов. Расчет определителей и рангов матриц, нахождение обратных матриц. Разрешение уравнений по методу Крамера, обратной матрицы, а также встроенной функции lsolve. Анализ полученных результатов.
лабораторная работа [86,8 K], добавлен 13.10.2014Знакомство с уравнениями линейной регрессии, рассмотрение распространенных способов решения. Общая характеристика метода наименьших квадратов. Особенности оценки статистической значимости парной линейной регрессии. Анализ транспонированной матрицы.
контрольная работа [380,9 K], добавлен 05.04.2015Понятие и характеристика линейного пространства, его главные свойства и особенности. Исследование аксиом векторного пространства. Анализ отличий и признаков векторного подпространства. Базис и формулы линейного пространств, определение его размерности.
реферат [249,4 K], добавлен 21.01.2011Способы задавания функции: табличный, графический и аналитический. Область определения и область значений функции, промежутки ее знакопостоянства. Свойства постоянной функции. Множества значений функции y=arctgx. Основные свойства функции y=sinx.
реферат [799,4 K], добавлен 22.06.2019Алгоритм упорядочивания множества. Определение декартового произведения, его графическая интерпретация. Обратное декартово произведение множеств. Проецирование на оси координат и на координатные плоскости. Область определения и область значений.
лекция [126,5 K], добавлен 18.12.2013Нахождение собственных значений и собственных векторов матриц. Нетривиальное решение однородной системы линейных алгебраических уравнений. Метод нахождения характеристического многочлена, предложенный А.М. Данилевским. Получение формы Жордано: form.exe.
курсовая работа [53,4 K], добавлен 29.08.2010Понятие и признаки метрического пространства. Свойства топологических пространств. Замкнутые множества: внутренние, внешние и граничные точки. Топологические преобразования топологических пространств. Понятие и содержание двумерного многообразия.
курсовая работа [481,4 K], добавлен 28.04.2011Нахождение области определения, области значений функции, построение ее графиков с помощью преобразований кривых. График линейной функции с областью значений - все положительные действительные числа. Исследование функции на непрерывность. Расчет предела.
контрольная работа [922,4 K], добавлен 13.12.2012Задача на вычисление скалярного произведения векторов. Нахождение модуля векторного произведения. Проверка коллинеарности и ортогональности. Составление канонического уравнения эллипса, гиперболы, параболы. Нахождение косинуса угла между его нормалями.
контрольная работа [102,5 K], добавлен 04.12.2013Определения понятия множество. Предельная точка множества, предел функции в точке. Эквивалентные, счетные и несчетные множества. Замкнутые и открытые множества. Функции на множестве. Свойства непрерывных функций на замкнутом ограниченном множестве.
курсовая работа [222,3 K], добавлен 11.01.2011Понятие метрического и топологического пространства. Расстояние между множествами. Диаметр множества. Непрерывные отображения. Гомеоморфизм. Вектор-функция скалярного аргумента. Понятия пути и кривой. Гладкая и регулярная кривая, замена параметра.
курс лекций [134,0 K], добавлен 02.06.2013Сущность понятия "скалярное произведение векторов". Законы векторного произведения. Практический пример нахождения площади треугольника. Общее понятие о правой и левой тройке. Содержание закона круговой переместительности. Объём треугольной пирамиды.
презентация [373,9 K], добавлен 16.11.2014Решение системы линейных уравнений методами Крамера, обратной матрицы и Гаусса. Расчет длин и скалярного произведения векторов. Уравнение прямой, проходящей через точку параллельно направляющему вектору. Расчет производных функций одной и двух переменных.
контрольная работа [984,9 K], добавлен 19.04.2013Методика проверки совместности системы уравнений и ее решение. Вычисление параметров однородной системы линейных алгебраических уравнений. Нахождение по координатам модуля, проекции вектора, скалярного произведения векторов. Составление уравнения прямой.
контрольная работа [104,2 K], добавлен 23.01.2012М- и (М-1)-последовательности на основе произведения многочленов. Результаты по синтезу модели: структурная схема, методика построения по алгоритму Хемминга и по корреляционному моменту, аффинному преобразованию для заданного множества векторов.
контрольная работа [960,4 K], добавлен 24.07.2013