Методы поиска минимума одномерных функций

Методика проведения оптимизации заданного выражения. Нахождение числа, при котором функция принимает оптимальное значение. Аналитический способ нахождения локального минимума. Методы одномерного поиска. Одномерная оптимизация с использованием производных.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 21.11.2013
Размер файла 143,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Методы поиска минимума одномерных функций

Постановка: требуется оптимизировать х (формальная постановка)

минимум функция одномерная производная

- функция одной переменной

- целевая функция.

Решение: найти х, при котором принимает оптимальное значение.

2 варианта:

минимизировать - задача минимизации;

максимизировать - задача максимизации.

Рассмотрим случай минимизации

2 способа:

аналитический

численный

В аналитическом задается в виде формулы, в численном задается в виде черного ящика, на входе подается х, на выходе значение целевой функции в этой точке.

Пусть функция определена в некоторой области S (), в случае одномерной оптимизации S - интервал :

точка называется глобальным минимумом, если для

точка называется строгим глобальным минимумом, если для

точка называется локальным минимумом, если для

точка называется строгим локальным минимумом, если для

Следствие: любая точка глобального минимума является локальным минимумом, обратное не верно.

Аналитический способ нахождения локального минимума

- дифференцируема

- необходимое условие точки локального минимума.

Численные методы

Пусть функция задана на интервале , при этом существует такая точка , что на - монотонно убывает, а на - монотонно возрастает, то функция унимодальная.

а b

Если из того что следует, что , то функция называется монотонно возрастающей. Если из того что следует, что , то функция называется монотонно убывающей.

Методы одномерного поиска

Разобьем и вычислим значение функции в каждой точке.

искомый минимум

В результате остается интервал меньшего размера, к которому применяется тот же метод, и находим еще один интервал, в конце находим интервал с заведомо нужной точкой.

Интервал неопределенности - интервал, в котором заведомо находится точка минимума. Наиболее эффективное разбиение - двумя точками на 3 равных отрезка.

1)

2)

- после выполнения n шагов сокращение исходного интервала

- точность с которой надо найти решение задачи.

N=2n, где n - число шагов, N - число вычислений (мера эффективности данного решения).

Метод золотого сечения

Точки должны быть расположены на равном расстоянии.

а b

; ; ;

; - золотое сечение.

сокращения на каждом шаге

число итераций растет как логарифм функции.

Одномерная оптимизация с использованием производных

. Пусть целевая функция дифференцируема .

точка локального минимума

точка локального максимума

точка перегиба

Методы для нахождения корня уравнения функции 1-ой переменной

Деление пополам:

Имеется хотя бы 1 корень. Выбираем любую точку и смотрим какой знак она имеет, такой знак нам и искать. Выбираем точку приблизительно в середине интервала, исследуя значения в 3-х можно отбросить половину интервала.

+

а b

ГРАДИЕНТНЫЕ МЕТОДЫ

Метод Коши

В методе Коши или методе наискорейшего спуска в качестве направления поиска выбирается направление антиградиента.

,

f = - градиент функции f(x)

Алгоритм метода выглядит следующим образом:

x(k + 1) = x(k) - (k)f(x(k)), где f (x) - градиент.

Значение (k) на каждой итерации вычисляется путем решения задачи одномерного поиска экстремума f(x) вдоль направления градиента f(x(k)). Если в качестве (k) взять некоторое положительное число, то получится простейший градиентный алгоритм:

f(k + 1) = x(k) - f(x(k))

Одно из главных достоинств метода Коши является его устойчивость, так как всегда выполняется условие

f(x(k + 1)) f(x(k))

Однако вблизи экстремума скорость сходимости алгоритма становится недопустимо низкой, так как вблизи экстремума значение градиента стремится к нулю.

Метод Ньютона (метод касательной)

В случае если известна производная, то выбираем - начальное приближение.

Допустим, что точка достаточно близка к корню функции и примерно себя ведет линейно не отклоняется. Проведем касательную и находим точку ближе чем , и повторяем до .

Для метода Ньютона необходимо:

функция должна иметь производную;

точка должна быть взята близко к корню;

функция изменяется близко к линейной функции.

;

- уравнение касательной;

.

Если , то вычисления можно прекратить и считать что нужный нам корень - условие прекращения поиска. (Е - значение корня с некоторой точностью).

В методе Ньютона каждая его итерация удваивает количество значащих цифр. Если все условия выполнены, то эти методы удваивают (ускоряют) количество значащих цифр:

;

Представим что линейная функция, то метод Ньютона позволяет найти ее корень за 1-у итерацию. Целевая функция представляет собой квадратичную зависимость следовательно метод Ньютона позволяет найти минимум или максимум квадратичной функции за 1-у итерацию.

Замена функции на касательную, называется - линейная аппроксимация, и ее применение к целевой функции парабола в точке приближения.

Замена заданной зависимости квадратичной зависимостью, называется - квадратичной аппроксимацией. Метод Ньютона основан на замене заданной зависимости более простой зависимостью.

Методы прямого поиска.

Должны задать начальное приближение точки х0;

- некоторое приближение полученное после к - итераций;

вычислить значение точки в окрестности точки ;

Из данных точек выбрать точку в которой функция принимает наименьшее значение, выбираем ее и строим вокруг нее окрестность.

Выбираем точку где хуже. В окрестности существующей точки выбираем точку с меньшим значением, опять в ее окрестности есть точки с меньшим значением и т.д.

Метод координатного спуска.

Существует приближенная точка минимума. Минимизируя функцию по направлению к х1, на прямой используется любой метод одномерной минимизируют, х2 - фиксируют. Далее выполняют одномерную оптимизацию по х2, фиксируя х1.

Этот процесс повторяют до тех пор пока следующая точка не окажется близка к точке приближения.

Размещено на Allbest.ru

...

Подобные документы

  • Изучение методов одномерной оптимизации и сравнение эффективности их применения для конкретных целевых функций. Нахождение минимума функции 1/|x-3|3 методами перебора, поразрядного поиска, дихотомии, золотого сечения, средней точки, хорд и Ньютона.

    курсовая работа [761,8 K], добавлен 25.12.2015

  • Методы нахождения минимума функций градиентным методом наискорейшего спуска. Моделирование метода и нахождение минимума функции двух переменных с помощью ЭВМ. Алгоритм программы, отражение в ней этапов метода на языке программирования Borland Delphi 7.

    лабораторная работа [533,9 K], добавлен 26.04.2014

  • Методы нахождения минимума функции одной переменной и функции многих переменных. Разработка программного обеспечения вычисления локального минимума функции Химмельблау методом покоординатного спуска. Поиск минимума функции методом золотого сечения.

    курсовая работа [95,1 K], добавлен 12.10.2009

  • Численные методы поиска безусловного экстремума. Задачи безусловной минимизации. Расчет минимума функции методом покоординатного спуска. Решение задач линейного программирования графическим и симплексным методом. Работа с программой MathCAD.

    курсовая работа [517,9 K], добавлен 30.04.2011

  • Поиск оптимальных значений некоторых параметров в процессе решения задачи оптимизации. Сравнение двух альтернативных решений с помощью целевой функции. Теорема Вейерштрасса. Численные методы поиска экстремальных значений функций. Погрешность решения.

    презентация [80,6 K], добавлен 18.04.2013

  • Развитие численных линейных методов решения задач линейного программирования. Знакомство с методами поиска целевой функции: равномерный симплекс, методы Коши, Ньютона, сопряжённого градиенты, квазиньютоновский метод. Алгоритмы нахождения экстремума.

    курсовая работа [716,1 K], добавлен 12.07.2012

  • Рассмотрение эффективности применения методов штрафов, безусловной оптимизации, сопряженных направлений и наискорейшего градиентного спуска для решения задачи поиска экстремума (максимума) функции нескольких переменных при наличии ограничения равенства.

    контрольная работа [1,4 M], добавлен 16.08.2010

  • Условия существования предела в точке. Расчет производных функции, заданной параметрически. Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз. Уравнение наклонной асимптоты. Точка локального максимума.

    курсовая работа [836,0 K], добавлен 09.12.2013

  • Математическое программирование - область математики, в которой изучаются методы решения задач условной оптимизации. Основные понятия и определения в задачах оптимизации. Динамическое программирование – математический метод поиска оптимального управления.

    презентация [112,6 K], добавлен 23.06.2013

  • Методы условной и безусловной нелинейной оптимизации. Исследование функции на безусловный экстремум. Численные методы минимизации функции. Минимизация со смешанными ограничениями. Седловые точки функции Лагранжа. Использование пакетов MS Excel и Matlab.

    лабораторная работа [600,0 K], добавлен 06.07.2009

  • Нахождение экстремума функции нескольких переменных не на всей области определения, а на множестве, удовлетворяющему некоторому условию. Практический пример нахождения точки максимума и минимума функции. Главные особенности метода множителей Лагранжа.

    презентация [112,6 K], добавлен 17.09.2013

  • Нахождение производных функций, построение графика функции с помощью методов дифференциального исчисления, нахождение точки пересечения с осями координат. Исследование функции на возрастание и убывание, нахождение интегралов, установка их расходимости.

    контрольная работа [130,5 K], добавлен 09.04.2010

  • Определение допустимого решения задачи линейного программирования методом введения искусственного базиса. Целочисленное линейное программирование с булевскими переменными. Поиск минимума функции методом градиентного спуска. Одномерная минимизация.

    курсовая работа [281,7 K], добавлен 27.05.2013

  • Изучение способов нахождения пределов функций и их производных. Правило дифференцирования сложных функций. Исследование поведения функции на концах заданных промежутков. Вычисление площади фигуры при помощи интегралов. Решение дифференциальных уравнений.

    контрольная работа [75,6 K], добавлен 23.10.2010

  • Сущность сопряженных направлений, знакомство с основными алгоритмами. Особенности поиска минимума функции методом Пауэлла. Разработка приложений с графическим интерфейсом. Исследование квадратичных функций, решение задач методом сопряженных направлений.

    курсовая работа [2,8 M], добавлен 14.07.2012

  • Общие свойства функций. Правила дифференциального исчисления. Неопределенный и определенный интегралы, методы их вычисления. Функции нескольких переменных, производные и дифференциалы. Классические методы оптимизации. Модель потребительского выбора.

    методичка [2,0 M], добавлен 07.01.2011

  • Нахождение пределов функций. Определение значения производных данных функций в заданной точке. Проведение исследования функций с указанием области определения и точек разрыва, экстремумов и асимптот. Построение графиков функций по полученным данным.

    контрольная работа [157,0 K], добавлен 11.03.2015

  • Обзор таблицы производных элементарных функций. Понятие промежуточного аргумента. Правила дифференцирования сложных функций. Способ изображения траектории точки в виде изменения ее проекций по осям. Дифференцирование параметрически заданной функции.

    контрольная работа [238,1 K], добавлен 11.08.2009

  • Правило нахождения производной произведения функций. Формулы нахождения производных для функций, заданных параметрически. Геометрический смысл производной. Приращение и дифференциал функции. Наибольшее и наименьшее значения на замкнутом множестве.

    контрольная работа [75,5 K], добавлен 07.09.2010

  • Математическая задача оптимизации. Минимум функции одной и многих переменных. Унимодальные и выпуклые функции. Прямые методы безусловной оптимизации и минимизации, их практическое применение. Методы деления отрезка пополам (дихотомия) и золотого сечения.

    курсовая работа [2,0 M], добавлен 26.08.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.