Способы преобразования чертежа методом вращения вокруг проецирующей оси и методом плоскопараллельного перемещения
Способ вращения геометрической фигуры вокруг некоторой оси. Нахождение натуральной величины треугольника АВС при помощи вращения его вокруг горизонтали. Сущность способа плоскопараллельного перемещения. Определение расстояния от точки до плоскости.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 24.11.2013 |
Размер файла | 423,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Реферат на тему:
«Способы преобразования чертежа методом вращения вокруг проецирующей оси и методом плоскопараллельного перемещения»
Выполнил
студент первого курса
машиностроительного факультета
Гр. 331 Ромадин Роман
Преподаватель Атаманова Нина Вениаминовна
РИ (ф) МГОУ 2013 год
1. СПОСОБ ВРАЩЕНИЯ ВОКРУГ ПРОЕЦИРУЮЩЕЙ ОСИ
Способ вращения геометрической фигуры вокруг некоторой оси состоит в том, что фигура вращается вокруг оси до требуемого положения относительно заданной неподвижной системы плоскостей проекций.
В качестве оси вращения может быть взята любая прямая. В практике же преобразования комплексного чертежа широкое распространение получило вращение вокруг проецирующих прямых и линий уровня.
Рис.1 - вращение точки А вокруг проецирующей оси
При вращении некоторой точки вокруг оси она описывает окружность, расположенную в плоскости, перпендикулярной оси вращения. На рис. 1 рассмотрено вращение точки А вокруг горизонтально проецирующей оси. Плоскость вращения параллельна плоскости П1 и на фронтальной проекции изображается следом 2. Горизонтальная проекция О1центра вращения О совпадает с проекцией M1N1 оси, а горизонтальная проекция О1А1 радиуса вращения является его натуральной величиной. Вращаясь вокруг оси, точка А перемещается по окружности, которая на А1 проецируется в окружность, а на П2 - в отрезок прямой, параллельный оси х. На рис.1 поворот произведен на угол против часовой стрелки так, чтобы в новом положении точки радиус вращения был параллелен плоскости П2.
Если точку вращать вокруг оси, перпендикулярной плоскости П2, то ее фронтальная проекция будет перемещаться по окружности, а горизонтальная - параллельно оси х.
Вращение вокруг проецирующей прямой применяют при решении задачи на определение натуральной величины отрезка прямой (рис. 2). Ось вращения выбирают так, чтобы она проходила через одну из крайних точек отрезка, например, через точку В. Тогда при повороте точки А на угол в положение А отрезок АВ перемещается в положение АВ, параллельное плоскости П2. В этом случае отрезок будет проецироваться на П2 в натуральную величину ( В 2А2 = ВА ). Одновременно в натуральную величину будет проецироваться угол а наклона отрезка АВ к плоскости П1.
Рис. 2 - вращение вокруг проецирующей прямой
Натуральную величину плоской фигуры удобнее находить с помощью вращения вокруг прямой уровня. Путем такого вращения плоскость, которой принадлежит рассматриваемая фигура, поворачивают в положение, параллельное плоскости проекций. При таком положении плоскости любая принадлежащая ей фигура будет проецироваться в натуральную величину.
Вращая плоскость вокруг горизонтали, можно перевести ее в положение, параллельное плоскости П1. Вращение плоскости вокруг фронтали позволяет перевестиее в положение, параллельное плоскости П2.
На рис. 3 рассмотрено нахождение натуральной величины треугольника АВС при помощи вращения его вокруг горизонтали. Каждая точка плоскости треугольника АВС при вращении перемещается по окружности, перпендикулярной оси вращения. Так, точка В перемещается по окружности, плоскость которой перпендикулярна горизонтали. Центр окружности О находится на оси вращения, а величина радиуса равна расстоянию от точки до оси вращения. Так как точка В вращается вокруг горизонтали, то окружность проецируется на П1 в отрезок прямой, перпендикулярный горизонтали, а на П2 - в эллипс, который можно не строить.
Рис. 3 - нахождение натуральной величины треугольника АВС при помощи вращения его вокруг горизонтали
На рис. 3 видно, что и на П1, и на П2 радиус вращения проецируется с искажением. Натуральную величину радиуса находим методом прямоугольного треугольника. Для этого принимаем горизонтальную проекцию О1В1 за катет прямоугольного треугольника. Второй катет должен быть равен разности координат Z концов отрезка OB (ZВ - Z0). Гипотенуза треугольника О1В1В1' (О1В1') равна R. После поворота плоскость треугольника будет параллельна П1. Следовательно, 0В спроецируется на П1 в натуральную величину. Горизонтальную проекцию нового, после поворота, положения точки В (В1') находим на пересечении дуги окружности, проведенной из горизонтальной проекции центра вращения О1, радиусом, равным О1В1, с горизонтальной проекцией плоскости A (А1).
Точка С также перемещается по окружности, плоскость которой Г перпендикулярна горизонтали. Точка 1 находится на горизонтали, поэтому при вращении не перемещается. Так как точки В, 1 и С находятся на одной прямой, то горизонтальную проекцию нового, после поворота, положения точки С найдем на пересечении прямой, проведенной через В1 и 11, с горизонтальной проекцией плоскости Г (Г1).
2. СПОСОБ ПЛОСКОПАРАЛЛЕЛЬНОГО ПЕРЕМЕЩЕНИЯ
При использовании способа вращения фигур иногда происходит наложение изображений. Этого можно избежать, применяя способ плоскопараллельного перемещения.
Сущность этого способа заключается в том, что все точки геометрической фигуры перемещаются в плоскостях, параллельных одной из плоскостей проекций.
Следовательно, точки движутся в плоскостях уровня, и одна из проекций геометрической фигуры перемещается без изменения формы и размеров, а на другой проекции траектории движения точек параллельны оси x.
Рассмотрим преобразование отрезка АВ прямой общего положения в проецирующую прямую (Рис. 4). Первоначально преобразуем прямую АВ во фронталь, переместив проекцию А1В1 без изменения размеров параллельно оси x (в произвольном месте). Точки прямой АВ перемещаются параллельно плоскости 1. На фронтальной проекции траектории точек параллельны оси x. Новые фронтальные проекции определяем на пересечении линий связи от АВ с траекториями движения точек.
Рис. 4 - преобразование отрезка АВ прямой общего положения в проецирующую прямую
Проекция АВ является натуральной величиной АВ, так как первым перемещением прямая преобразована во фронталь.
Второе перемещение выполним параллельно плоскости 2. Фронтальную проекцию переместим без изменений размеров перпендикулярно оси x (АВ x). На горизонтальной проекции точки движутся параллельно оси x, и отрезок АВ преобразуется в горизонтально проецирующую прямую.
Пример. Определить расстояние от точки S до плоскости АВС (рис. 5) способом плоскопараллельного перемещения.
Решение. Для решения этой задачи необходимо преобразовать плоскость общего положения в проецирующую. Если одна из проекций плоскости будет преобразована в прямую линию, то можно опустить перпендикуляр из точки S и определить расстояние. Перемещаем плоскость АВС перпендикулярно плоскости 2.
Рис. 5 - определение расстояния от точки S до плоскости ABC способом плоскопараллельного перемещения
вращение фигура чертеж ось
Располагаем новую горизонтальную проекцию прямоугольника АВС без изменения формы и размера так, чтобы горизонталь h оказалась перпендикулярной плоскости 2. На фронтальной проекции точки перемещаются параллельно оси x. Новая фронтальная проекция треугольника АВС преобразуется в прямую линию. Опускаем перпендикуляр из перемещенной точки S на новую фронтальную проекцию треугольника.
Литература
Гордон В.О., Семенцов-Огиевский М.А. Курс начертательной геометрии.- М.: Наука, 1998.
www HYPERLINK "http://www.graphics.distant.ru/". HYPERLINK "http://www.graphics.distant.ru/"graphics.distant.ru
www HYPERLINK "http://www.lib.qrz.ru/". HYPERLINK "http://www.lib.qrz.ru/"lib.qrz.ru
Размещено на Allbest.ru
...Подобные документы
Решение задач по геометрии. Составление кроссвордов на тему "Тела и фигуры вращения". Математика и история. Модель "Седла" - пример криволинейной поверхности. Изучение основных тел. Движение твердого тела вокруг неподвижной точки. Теорема Пифагора.
творческая работа [688,6 K], добавлен 13.04.2014Неопределенный интеграл. Объем тела вращения. Эмпирическая формула. Сходимость ряда. Вычисление объема тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями. Исследование на условную сходимость по признаку Лейбница.
контрольная работа [25,8 K], добавлен 27.05.2004Расчет внешнего осесимметричного обтекания тел вращения. Поперечное обтекание тел вращения с сохранением системы координат. Расчет обтекания тел вращения большого удлинения приближенным методом. Продольное и поперечное обтекание удлиненных тел вращения.
курсовая работа [94,5 K], добавлен 12.10.2009Фигуры вращения правильных многогранников, использование их теории. Виды поверхностей в фигурах вращения. Теорема о пересечении гиперболической и цилиндрической поверхностей вращения. Классификация задач на вращение многогранников и вычисление объемов.
реферат [1,1 M], добавлен 25.09.2009Определение цилиндра (кругового прямого и наклонного), прямого и усечённого конуса, шара и сферы. Основные формулы по расчету геометрических размеров фигур вращения: радиуса, площади боковой и полной поверхности. Объем шара по Архимеду. Уравнение сферы.
презентация [3,4 M], добавлен 18.04.2013Замкнутые пространственные фигуры, ограниченные плоскими многоугольниками. Линейчатые поверхности вращения. Точка на поверхности тора и сферы. Понятие меридиональной плоскости. Преобразование комплексного чертежа. Метод замены плоскостей проекций.
презентация [69,8 K], добавлен 27.10.2013Нахождение статических моментов и центра тяжести кривой. Нахождение статических моментов и центра тяжести плоской фигуры. Первая и вторая теоремы Гульдина. Нахождение объема тела вращения плоской фигуры. Использование интеграла вместо обыкновенной суммы.
курсовая работа [275,3 K], добавлен 30.12.2011Методика преобразования вращения и ее значение в решении алгебраических систем уравнений. Получение результирующей матрицы. Ортогональные преобразования отражением. Итерационные методы с минимизацией невязки. Решение методом сопряженных направлений.
реферат [116,3 K], добавлен 14.08.2009Вычисление определителя с использованием правила треугольника и метода разложения по элементам ряда. Решение системы уравнений тремя способами: методом Гаусса, методом Кремера и матричным методом. Составление уравнения прямой и плоскости по формуле.
контрольная работа [194,5 K], добавлен 16.02.2015Вычисление площадей плоских фигур. Нахождение определенного интеграла функции. Определение площади под кривой, площади фигуры, заключенной между кривыми. Вычисление объемов тел вращения. Предел интегральной суммы функции. Определение объема цилиндра.
презентация [159,1 K], добавлен 18.09.2013Производные функций, заданных в явном и неявном виде. Исследование функций методами дифференциального исчисления. Точки перегиба и экстремума, градиент функции. Объем тела, образованного вращением фигуры и ограниченной графиками функций, вокруг оси.
контрольная работа [77,3 K], добавлен 11.07.2013Решение системы уравнений по формулам Крамера и методом Гаусса. Нахождение объема пирамиды, площади грани, величины проекции вектора с помощью средств векторной алгебры. Пример определения и решения уравнения стороны, высоты и медианы треугольника.
контрольная работа [989,1 K], добавлен 22.04.2014Поиск площади фигуры, ограниченной графиками функций с помощью двойного интеграла. Получение вращением объема тела вокруг оси ОХ фигуры, ограниченной указанными линиями. Пределы интегрирования в двойном интеграле по области, ограниченной линиями.
контрольная работа [166,9 K], добавлен 28.03.2014Особенности применения координатного метода при изучении стереометрии в 10-11-х классах. Определение расстояния от точки до прямой и до плоскости в пространстве, а также между скрещивающимися прямыми. Нахождение углов между двумя прямыми и плоскостями.
статья [2,1 M], добавлен 04.12.2012Симплекс как геометрическая фигура, являющаяся мерным обобщением треугольника. Математика и её место в жизни человека. Алгоритм решения задачи "нахождение наименьшего значения линейной функции симплексным методом". Составление начальной симплекс таблицы.
контрольная работа [484,7 K], добавлен 29.07.2013Сущность понятия "производная". Ускорение как вторая производная от функции, описывающая движение тела. Решение задачи на определение мгновенной скорости движения точки в момент времени. Производная в реакциях, её роль и место. Общий вид формулы.
презентация [187,1 K], добавлен 22.12.2013Разложение определителя 4-го порядка. Проверка с помощью функции МОПРЕД() в программе Microsoft Excel. Нахождение обратной матрицы. Решение системы линейных уравнений методом обратной матрицы и методом Гаусса. Составление общего уравнения плоскости.
контрольная работа [138,7 K], добавлен 05.07.2015Уравнение плоскости, проходящей через точку и перпендикулярной заданному вектору, плоскости в отрезках, проходящей через три точки. Общее уравнение плоскости. Условие параллельности и перпендикулярности двух плоскостей. Расстояние от точки до плоскости.
презентация [106,9 K], добавлен 21.09.2013Понятие числовой прямой. Типы числовых промежутков. Определение координатами положения точки на прямой, на плоскости, в пространстве, система координат. Единицы измерения для осей. Определение расстояния между двумя точками плоскости и в пространстве.
реферат [123,9 K], добавлен 19.01.2012Исследование заданной функции и построение ее графика. Расчет объема тела, полученного вращением вокруг оси абсцисс фигуры, ограниченной линиями и осями координат. Вычисление интеграла при заданной силе. Работа, которую нужно совершить для сжатия пружины.
контрольная работа [425,4 K], добавлен 18.10.2010