Развитие математического знания
Возникновение элементарной математики, первые системы исчисления древних государств и основоположники математических школ. Создание аналитической геометрии, дифференциальное и интегральное исчисление. Основные этапы становления современной математики.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 08.12.2013 |
Размер файла | 26,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
2
ГБОУ СПО РО РСК
Реферат по дисциплине «История математики»
на тему:
«Развитие математического знания»
Выполнила студентка
группы С-11
Поважная Виктория
Преподаватель:
Хмелевская Елена Николаевна
г. Ростов-на-Дону 2013г.
Содержание
Введение
Глава 1. История развития математики
§ 1. Период элементарной математики
§ 2. Первые системы исчисления древних государств
§ 3. Основоположники древних математических школ
§ 4. Первые достижения древних мыслителей
§ 5. Развитие математики по территории древних государств
Глава 2. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрального исчисления
Глава 3.Развитие математики в России в XVIII-XIX столетия
§ 1. Развитие математики в Древней Руси
§ 2. Первые математические научные работы
Глава 4.Основные этапы становления современной математики
§ 1. Методы исследования математики
§ 2. Создание дифференциальной геометрии
§ 3.Основные достижения 20-го века в математике
Заключение
Список литературы
элементарная математика аналитическая геометрия дифференциал
Введение
„Математика ум в порядок приводит“ М. Ломоносов
История развития математики - это не только история развития математических идей, понятий и направлений, но это и история взаимосвязи математики с человеческой деятельностью, социально-экономическими условиями различных эпох.
Становление и развитие математики как науки, возникновение ее новых разделов тесно связано с развитием потребностей общества в измерениях, контроле, особенно в областях аграрной, промышленной и налогообложения.
Первые области применения математики были связаны с созерцанием звезд и земледелием. Изучение звездного неба позволило проложить торговые морские пути, караванные дороги в новые районы и резко увеличить эффект торговли между государствами. Обмен товарами приводил к обмену культурными ценностями, к развитию толерантности как явления, лежащего в основе мирного сосуществования различных рас и народов.
Глава 1. История развития математики
§ 1. Период элементарной математики
Наши первоначальные представления о числе и форме относятся к очень отдаленной эпохе древнего каменного века. Числовые термины медленно входили в употребление рыболовов, охотников, а затем землевладельцев и торговцев.
Из дошедших до нас математических документов Востока можно заключить, что в Древнем Египте были сильно развиты отрасли математики, связанные с решением экономических задач.
§ 2.Первые системы исчисления древних государств
Египтяне пользовались двумя системами письма. Одна - иероглифическая - встречается на памятниках и могильных плитах, каждый символ изображает какой-нибудь предмет. В другой системе - иератической - использовались условные знаки, которые произошли из иероглифов в результате упрощений и стилизаций. Именно эта система чаще встречается на папирусах.
Иероглифическая система счисления имеет основание 10 и не является позиционной: для обозначения чисел 1, 10, 100 и т.д. в ней используется разные символы, каждый символ повторяется определенное число раз, и, чтобы прочитать число, нужно просуммировать значения всех символов, входящих в его запись.
Иератическая система счисления также десятичная, но специальные дополнительные символы помогают избежать повторения, принятого в иероглифической системе.
Вавилонская система счисления является комбинацией шестидесятеричной и десятичной систем с применением позиционного принципа; в ней используются всего два разных символа: один обозначает единицу, второй - число 10; все числа записываются при помощи этих двух символов с учетом позиционного принципа. Греки в течении одного-двух столетия сумели овладеть математическим наследием предшественников, но они не довольствовались усвоением знаний; греки создали абстрактную и дедуктивную математику. Они были, прежде всего, геометрами, имена которых и даже сочинения дошли до нас. Это Фалес Милетский, школа Пифагора, Гиппократ Хиоский, Демокрит, Евдокс, Аристотель, Евклид, Архимед, Аполоний.
§ 3. Основоположники древних математических школ
Основоположником пифагорейской школы был Пифагор Самосский (580-500 до н.э.).
Главной заслугой пифагорейцев в области науки является существенное развитие математики, как по содержанию, так и по форме.
Пифагорейцы развили и обосновали планиметрию прямолинейных фигур: учение о параллельных линиях, треугольниках, четырехугольниках, правильных многоугольниках. Получила развитие элементарная теория окружности и круга.
Наличие у пифагорейцев учения о параллельных линиях говорит о том, что они владели методом доказательства от противного и впервые доказали теорему о сумме углов треугольника. Вершиной достижений пифагорейцев в планиметрии является доказательство теоремы Пифагора.
Элейская школа - это одна из древнейших школ, в трудах которой математика и философия достаточно тесно и разносторонне взаимодействуют. Основными представителями элейской школы считают Парменида (конец VI - V в. до н.э.) и Зенона (первая половина V в. до н.э.).
В силу тесной взаимосвязи общих философских представлений с фундаментальными математическими положениями удар, нанесенный Зеноном по философским воззрениям, существенно затронул систему математических знаний.
§4. Первые достижения древних мыслителей
Посредством математических отношений Платон пытался охарактеризовать некоторые явления общественной жизни. Платон существенно опирался на математику при разработке основных разделов своей философии. Математика сыграла значительную роль в конструктивном оформлении его философской системы.
Величайший философ древности Аристотель (384-322 гг. до н.э.) в математике, по - видимому не проводил конкретных исследований, однако важнейшие стороны математического познания были подвергнуты им глубокому философскому анализу, послужившему методологической основой деятельности многих поколений математиков. Среди известных сочинений Аристотеля нет специально посвященных изложению методологических проблем математики.
Из арифметики постепенно вырастает теория чисел. Создается систематическое учение о величинах и измерении. Процесс формирования понятия действительного числа оказывается весьма длительным.
В течение 5-го, 4-го, 3-го тысячелетий до н.э. новые и более совершенные формы общества складывались на основе упрочившихся общин, существовавших на берегах великих рек Африки и Азии.
§ 5. Развитие математики по территории древних государств
Восточная математика возникла как прикладная наука, имевшая целью облегчить календарные расчеты распределения урожая и сбора налогов. В начале главным делом были арифметические расчеты и измерения. Однако с течением времени из арифметики выросла алгебра, а из измерений возникли зачатки теоретической геометрии. На Востоке возникла система, основанная на десятичной системе счисления со специальными знаками для каждой десятичной единицы более высокого разряда - системе, которая нам знакома, благодаря римскому исчислению, основанному на том же принципе. Именно на востоке определено значение р.
В течение последних столетий 2-го тысячелетия до н.э. в бассейне Средиземного моря и прилегающих к нему областях очень многое изменилось в политике. Итогом был расцвет греческого полиса - самоуправляющегося города - государства. Именно в этой атмосфере родилась современная математика.
В течение первых веков западного феодализма даже в монастырях не очень высоко ставят математику. Там она сводилась лишь к скромной арифметике церковного назначения.
Математика развивалась главным образом в растущих торговых городах. Горожан интересовал счет, арифметика, вычисления. Развитие анализа получило мощный импульс, когда была написана «Геометрия» Декарта. Она включила в алгебру всю область классической геометрии. Декарт создал аналитическую геометрию. Ферма и Паскаль стали основателями математической теории вероятностей. Постепенное формирование интереса к задачам, связанным с вероятностями, происходило, прежде всего, под влиянием страхового дела.
Глава 2. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрального исчисления
В XVII в. начинается новый период истории математики - период математики переменных величин. Его возникновение связано, прежде всего, с успехами астрономии и механики.
Первым решительным шагом в создании математики переменных величин было появление книги Декарта «Геометрия». Основными заслугами Декарта перед математикой являются введение им переменной величины и создание аналитической геометрии.
Дифференциальные методы решали основную задачу: зная кривую линию, найти ее касательные. Многие задачи практики приводили к постановке обратной задачи. В процессе решения задачи выяснялось, что к ней применимы интеграционные методы. Так была установлена глубокая связь между дифференциальными и интегральными методами, что создало основу для единого исчисления.
Математики XVIII в. работали одновременно в области естествознания и техники. Лагранж создал основы аналитической механики. Монументальное произведение Лапласа «Небесная механика» подвело итоги всех предшествовавших работ в этой области.
XVIII в. дал математике мощный аппарат - анализ бесконечно малых. В этот период Эйлер ввел в математику символ f (x) для функции и показал, что функциональная зависимость является основным объектом изучения математического анализа.
В XVIII в. из математического анализа выделился ряд важных математических дисциплин: теория дифференциальных уравнений, вариационное исчисление. В это время началась разработка теории вероятностей.
Глава 3. Развитие математики в России в XVIII-XIX столетиях
§ 1. Развитие математики в Древней Руси
Математическое образование в России находилось в 9--13 веках на уровне наиболее культурных стран Восточной и Западной Европы. Затем оно было надолго задержано монгольским нашествием. В 15--16 веках в связи с укреплением Русского государства и экономическим ростом страны значительно выросли потребности общества в математических знаниях. В конце 16 века и особенно в 17 веке появились многочисленные рукописные руководства по арифметике, геометрии, в которых излагались довольно обширные сведения, необходимые для практической деятельности (торговли, налогового дела, артиллерийского дела, строительства и пр.).
Наиболее древнее известное нам математическое произведение относится к 1136 и принадлежит новгородскому монаху Кирику. Оно посвящено арифметико-хронологическим расчётам, которые показывают, что в то время на Руси умели решать сложную задачу вычисления пасхалий, сводящуюся в своей математической части к решению в целых числах неопределённых уравнений первой степени. В геометрических рукописях содержалось изложение правил определения площадей фигур и объёмов тел, часто приближённых, использовались свойства подобных треугольников и теорема Пифагора.
§ 2. Первые математические научные работы
Возникновение в России систематической научной работы неразрывно связано с учреждением Академии Наук. Если, по мнению Петра, в молодую Академию должны были быть привлечены исключительно выдающиеся ученые, которые "совершенно и основательно дело свое разумеют", то математике в этом отношении особенно повезло.
К самому концу XVIII столетия выдвигаются еще некоторые русские математики, так же, как и их предшественники, не внесшие еще серьезных вкладов в науку, но основательно изучившие математику, преподававшие ее в различных учебных заведениях и опубликовавшие ряд сочинений. Сюда относится в первую очередь Василий Иванович Висковатов. Висковатов опубликовал несколько мемуаров в изданиях Академии, а также руководство по элементарной алгебре. Он перевел и издал "Основы механики" Боссю и выпустил новое издание алгебры Эйлера.
Современником Висковатова был Семен Емельянович Гурьев, избранный в Академию в 1800 году. Он уже делает смелую попытку улучшать Евклида. В 1798 году он выпустил сочинение "Опыт усовершенствования элементов геометрии". Автор приобщается здесь к тому классу математиков, которых не удовлетворяют рассуждения Евклида.
В начале XIX столетия была создана особая комиссия для составления "Морского курса", т.е. ряда учебников для учащихся морского кадетского корпуса. Первый том был написан Висковатовым, а второй принадлежал Гурьеву. Одновременно стали появляться образованные математики и в провинции. Большинство русских математиков, занявших в первой половине XIX столетия кафедры математики в русских университетах, учились по этому руководству.
В начале второй четверти XIX столетия в России появляются уже ученые, занявшие почетное место в европейской науке. Если мы назвали Котельникова и Румовского первенцами русской математики, то первенцами русского математического творчества, того творчества, которое оставляет глубокий след в науке, были В. Я. Буняковский, М. В. Остроградский и Н. И. Лобачевский.
Внимание этого глубокого мыслителя было сосредоточено на вопросах, имеющих многовековую историю. Как и сотни других математиков, Лобачевский заинтересовался постулатом Евклида. Дело сводится к тому, что две прямые на плоскости, одна из которых перпендикулярна секущей, а другая наклонена к ней под острым углом, необходимо должны пересечься. Но доказать эту аксиому никто не мог. Как и многие другие математики, Лобачевский начал с того, что предложил два доказательства этого постулата, но вскоре он вынужден был убедиться, что доказательства эти не выдерживают критики.
Лобачевский развил эту геометрию до тех же пределов, до которых доведена, Евклидова геометрия. Она имеет свою тригонометрию и свою аналитическую геометрию. Именно в том обстоятельстве, что Лобачевский разрабатывал свою систему, совершенно не имея конкретных образов, на которых он мог бы проверить свои выводы, доверяя, таким образом, исключительно тонкому анализу отвлеченной мысли, и выразилась сила его гения.
В первой половине XIX столетия не выработалась преемственная школа русских математиков, но молодая русская математика уже в первый период своего развития дала выдающихся представителей в различных отраслях этой трудной науки, один из которых уже в первой половине столетия вписал свое имя в историю человеческой мысли.
Глава 4.Основные этапы становления современной математики
§ 1. Методы исследования математики
В конце XVII и в XVIII веке все возрастающие запросы практики и других наук побуждали ученых максимально расширять область и методы исследований математики. Понятия бесконечности, движения и функциональной зависимости выдвигаются на первое место, становятся основой новых методов математики.
В XIX веке начинается новый период в развитии математики - современный. Накопленный в XVII и XVIII вв. огромный материал привел к необходимости углубленного логического анализа и объединения его с новых точек зрения. Связь математики с естествознанием приобретает теперь более сложные формы. Новые теории возникают не только в результате запросов естествознания или техники, а также из внутренних потребностей самой математики.
Теория групп ведет свое начало с рассмотрения Лагранжем групп подстановок в связи с проблемой разрешимости в радикалах алгебраических уравнений высших степеней. В середине XIX в. английский математик А.Кэлли дал общее «абстрактное» определение группы. Норвежский математик С.Ли разработал теорию непрерывных групп.
§ 2. Создание дифференциальной геометрии
Дифференциальная геометрия поверхностей создается Гауссом и Питерсоном. Для выработки новых взглядов на предмет геометрии основное значение имело создание Лобачевским неэвклидовой геометрии. Построив неэвклидову тригонометрию и аналитическую геометрию, он дал все необходимое для установления совместности и полноты системы аксиом этой новой геометрии. Развивалось долгое время и проективная геометрия, связанная с существенным изменением старых взглядов на пространство. Плюккер строит геометрию, рассматривая в качестве основных элементов прямые, Грассман создает аффинную метрическую геометрию n-мерного пространства.
Уже в гауссовой внутренней геометрии поверхностей дифференциальная геометрия освобождается от неразрывной связи с геометрией Евклида.
Ф.Клейн подчиняет все разнообразие построенных к этому времени «геометрий» пространств различного числа измерений идее изучения инвариантов той или иной группы преобразований. В 1879-1884 г.г. публикуются работы Кантора по общей теории бесконечных множеств. Только после этого могли быть сформулированы современные общие представления о предмете математики, строении математических теорий.
Во второй половине XIX в. начинается интенсивная разработка вопросов истории математики. Чрезвычайное развитие получают в конце XIX в. и в XX в. все разделы математики, начиная с самого старого из них - теории чисел. Немецкие и русский математик Е.И.Золотарев закладывают основы современной алгебраической теории чисел. В 1873 г. Ш.Эрмит доказывает трансцендентность числа ?, а в 1882 г. Ф. Линдеман - числа р. В России по теории чисел блестяще развивают А.Н. Коркин, Г.Ф. Вороной, И.М. Виноградов и А.А. Марков. Продолжают развиваться классические отделы алгебры.
Наибольшее внимание в области теории обыкновенных дифференциальных уравнений привлекают теперь вопросы качественного исследования их решений. Все эти исследования получили широкое развитие в России. Качественная теория дифференциальных уравнений послужила для Пуанкаре отправным пунктом для продолжения лишь едва намеченных Риманом исследований по топологии многообразий.
Теория дифференциальных уравнений с частными производными еще в конце XIX в. получает существенно новый вид.
Аналитическая теория отступает несколько на задний план, т.к. обнаруживается, что при решении краевых задач она не гарантирует «корректности».
Значительным дополнением к методам теории дифференциальных уравнений при изучении природы и решении технических задач являются методы теории вероятностей.
В конце XIX в. и в XX в. большое внимание уделяется методам численного интегрирования дифференциальных уравнений.
Дальнейшее развитие математики, вплоть до конца 19-го - начала 20-го веков имело в основном прагматический характер, когда математика применялась как эффективное средство для решения физических, астрономических и других прикладных задач. В то же время никогда не снимался вопрос о «законных» средствах построения математических понятий и доказательств. Ввиду отсутствия самого понятия математической логики, главным инструментом доказательств являлась интуиция. Интуиционизм, как определённое направление в математике, возник в начале 20-го века, в основном благодаря трудам Л.Брауэра и А.Гейтинга. В его основе лежит номиналистическая тенденция ограничить математику только такими понятиями, которым можно придать «реальный смысл».
§ 3.Основные достижения 20-го века в математике
К числу основных достижений 20-го века в области оснований математики следует отнести:
1. Выработку понятия формального языка и формальной системы (исчисления) и порождаемой ею теории.
2. Создание математической логики в виде непротиворечивой семантически полной формальной системы.
3. Создание аксиоматизированных формальных теорий арифметики, теории множеств, алгебраических систем и других важных разделов математики.
4. Формальное уточнение понятий алгоритма и вычислимой функции.
5. Арифметизация и погружение в формальную теорию таких важных понятий метаматематики, как доказуемость, непротиворечивость и др., что позволило решать многие метаматематические проблемы математическими средствами.
Перечисленные достижения потребовали осознания и уточнения многих важных математических и метаматематических понятий таких, как язык, синтаксис и семантика математических теорий и др. Всё это позволило взглянуть на проблему оснований математики с новых позиций по сравнению с предшествующими временами.
Заключение
Математическое моделирование, универсальность математических методов обуславливают огромную роль математики в самых различных областях человеческой деятельности.
Основой любой профессиональной деятельности являются умения:
1. строить и использовать математические модели для описания, прогнозирования и исследования различных явлений;
2. осуществить системный, качественный и количественный анализ;
3. владеть компьютерными методами сбора, хранения и обработки информации;
4. владеть методами решения оптимизационных задач.
Широкое применение находят математические методы в естествознании и сугубо гуманитарных науках: психологии, педагогике.
Можно сказать, что в недалеком будущем любая часть человеческой деятельности будет еще более широко использовать в своих исследованиях математические методы.
Список использованной литературы
1. Лаптев Б.Л.. Н.И.Лобачевский и его геометрия. М.: Просвещение, 1976.
2. Рыбников К.А.. История математики. М.: Наука, 1994.
3. Самарский А.А.. Математическое моделирование. М.: Наука, 1986.
4. Столл Р.Р.. Множество, Логика, Аксиоматическая теория. М.: Просвещение, 1968.
5. Стройк Д.Я.. Краткий очерк истории математики. М.: Наука, Физматлит, 1990.
6. Тихонов А.Н., Костомаров Д.П.. Рассказы о прикладной математике. М.: Вита-Пресс, 1996.
7. Юшкевич А.П.. Математика в ее истории. М.: Наука, 1996.
Размещено на Allbest.ru
...Подобные документы
История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.
реферат [38,2 K], добавлен 09.10.2008Развитие математики переменных величин: создание аналитической геометрии, дифференциального и интегрального исчисления. Значение появления книги Декарта "Геометрия" в создании математики переменных величин. Становление математики в ее современном виде.
реферат [25,9 K], добавлен 30.04.2011Характеристика экономического и культурного развития России в середине XVIII в. Новые задачи математики, обусловленные развитием техники и естествознанием. Развитие основных понятий математического анализа. Дифференциальное и интегральное исчисление.
автореферат [27,2 K], добавлен 29.05.2010Условия существования определенного интеграла. Приложение интегрального исчисления. Интегральное исчисление в геометрии. Механические приложение определенного интеграла. Интегральное исчисление в биологии. Интегральное исчисление в экономике.
курсовая работа [1,9 M], добавлен 21.01.2008Задачи оптимального управления и ее разновидности. Вычислительные аспекты динамического программирования. Дифференциальное и интегральное исчисление в образах: функции, последовательности, ряды. Транспортная задача, модель-Леонтьева, задачи на повторение.
курсовая работа [1,5 M], добавлен 20.06.2012Геометрия Евклида как первая естественнонаучная теория. Структура современной математики. Основные черты математического мышления. Аксиоматический метод. Принципы аксиоматического построения научных теорий. Математические доказательства.
реферат [32,4 K], добавлен 10.05.2011Значение математики в нашей жизни. История возникновения счета. Развитие методов вычислительной математики в настоящее время. Использование математики в других науках, роль математического моделирования. Состояние математического образования в России.
статья [16,2 K], добавлен 05.01.2010Элементы линейной алгебры. Элементы аналитической геометрии и векторной алгебры. Введение в математический анализ. Дифференциальное исчисление функций одной переменной. Дифференциальное исчисление функций нескольких независимых переменных. Интеграл.
методичка [90,5 K], добавлен 02.11.2008Возникновение и основные этапы развития математики как науки о структурах, порядке и отношениях на основе операций подсчета, измерения и описания форм реальных объектов. Развитие знаний арифметики и геометрии в Древнем Востоке, Вавилоне и Древней Греции.
презентация [1,8 M], добавлен 17.12.2010Элементы линейной алгебры. Дифференциальное и интегральное исчисление функции одной переменной. Биномиальный закон распределения. Комбинаторные формулы. Статистическое определение вероятности. Формула полной вероятности. Дискретные случайные величины.
творческая работа [686,3 K], добавлен 30.04.2009Введение понятия переменной величины. Развитие интегральных и дифференциальных методов. Математическое обоснование движения планет. Закон всемирного тяготения Ньютона. Научная школа Лейбница. Теория приливов и отливов. Создание математического анализа.
презентация [252,6 K], добавлен 20.09.2015Элементы алгебры и введение в математический анализ. Дифференциальное исчисление функций одной или нескольких переменных и элементы дифференциальной геометрии. Интегральное исчисление. Числовые и функциональные ряды. Кратные и криволинейные интегралы.
дипломная работа [188,5 K], добавлен 09.03.2009Греческая математика. Средние века и Возрождение. Начало современной математики. Современная математика. В основе математики лежит не логика, а здравая интуиция. Проблемы оснований математики являются философскими.
реферат [32,6 K], добавлен 06.09.2006Обзор развития европейской математики в XVII-XVIII вв. Неравномерность развития европейской науки. Аналитическая геометрия. Создание математического анализа. Научная школа Лейбница. Общая характеристика науки в XVIII в. Направления развития математики.
презентация [1,1 M], добавлен 20.09.2015Возникновение геометрии как науки о формах, размерах и границах частей пространства, которые в нем занимают вещественные тела. Появление геометрии в Греции к концу VII в. до н. э. Теорема Пифагора и развитие методов аналитической геометрии Гаусса.
реферат [38,5 K], добавлен 16.01.2010Общая характеристика математической культуры древних цивилизаций. Основные хронологические периоды зарождения и развития математики. Особенности математики в Египте, Вавилоне, Индии и Китае в древности. Математическая культура индейцев Мезоамерики.
презентация [16,3 M], добавлен 20.09.2015Элементы аналитической геометрии и линейной алгебры. Методы построения графика функции. Предел и непрерывность функции. Дифференциальное исчисление функции одной переменной. Определители и системы уравнений. Построение прямой и плоскости в пространстве.
методичка [1,0 M], добавлен 24.08.2009Особенности периода математики постоянных величин. Создание арифметики, алгебры, геометрии и тригонометрии. Общая характеристика математической культуры Древней Греции. Пифагорейская школа. Открытие несоизмеримости, таблицы Пифагора. "Начала" Евклида.
презентация [2,4 M], добавлен 20.09.2015Идеи интегрального исчисления в работах древних математиков. Особенности метода исчерпывания. История нахождения формулы объема тора Кеплера. Теоретическое обоснование принципа интегрального исчисления (принцип Кавальери). Понятие определенного интеграла.
презентация [1,8 M], добавлен 05.07.2016Историческая справка о возникновении и развитии математики как научной дисциплины. Разработка учебного тематического и календарного планов преподавания предмета "Высшая математика". Этапы составление плана-конспекта занятия на тему "Производная".
курсовая работа [303,7 K], добавлен 25.09.2010