Задачи оптимизации и методы их решения

Трудности решения задач линейного программирования как задач на нахождения значений параметров, обеспечивающих экстремум функции при наличии ограничений. Классификация оптимизации: о пищевом рационе, планировании производства и загрузке оборудования.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 20.12.2013
Размер файла 36,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

9

Содержание

1. Задача линейного программирования (ЗЛП)

2. Трудности решения ЗЛП

3. Классификация задач оптимизации

1. Задача линейного программирования (ЗЛП)

Термин линейное программирование появился в Америке в середине 40-х годов (первая американская работа по частной задаче линейного программирования опубликована в 1941 г.). В Советском Союзе исследования в этой области начались ранее. В конце 30-х годов целый ряд существенных результатов по линейному программированию был установлен Л.В. Канторовичем.

Задача линейного программирования - это задача нахождения значений параметров, обеспечивающих экстремум функции при наличии ограничений на аргументы.

Задачи линейного программирования являются самыми простыми и лучше изученными задачами. Для них характерно: показатель эффективности (целевая функция) выражается линейной зависимостью; ограничения на решения - линейные равенства или неравенства.

2. Трудности решения ЗЛП

Трудности решения задач линейного программирования зависят от: вида зависимости, связывающей целевую функцию с элементами решения; размерности задачи, то есть от количества элементов решения х1, х2,…, xn; вида и количества ограничений на элементы решений.

3. Классификация задач оптимизации

Задача о рациональном питании (задача о пищевом рационе).

ПОСТАНОВКА ЗАДАЧИ. Ферма производит откорм скота с коммерческой целью. Для простоты допустим, что имеется всего четыре вида продуктов: П1, П2, П3, П4; стоимость единицы каждого продукта равна соответственно С1, С2, С3, С4. Из этих продуктов требуется составить пищевой рацион, который должен содержать: белков - не менее bi единиц; углеводов - не менее b2 единиц; жиров - не менее b3 единиц. Для продуктов П1, П2, П3, П4 содержание белков, углеводов и жиров (в единицах на единицу продукта) известно и задано в таблице, где aij (i=1,2,3,4; j=1,2,3) - какие - то определённые числа; первый индекс указывает номер продукта, второй - номер элемента (белки, углеводы, жиры).

продукт

элементы

белки

углеводы

жиры

П1

П2

П3

П4

A11

A21

A31

A41

A12

A22

A32

A42

A13

A23

A33

A43

Требуется составить такой пищевой рацион (т.е. назначить количества продуктов П1, П2, П3, П4, входящих в него), чтобы условия по белкам, углеводам и жирам были выполнены и стоимость рациона была минимальна.

МАТЕМАТИЧЕСКУЮ МОДЕЛЬ. Обозначим x1, x2, x3, x4 количества продуктов П1, П2, П3, П4, входящих в рацион. Показатель эффективности, который требуется минимизировать, - стоимость рациона (обозначим её L): она линейно зависит от элементов решения x1, x2, x3, x4.

Целевая функция:

Система ограничений:

a11x1+a21x2+a31x3+a41x4?b1

a12x1+a22x2+a32x3+a42x4?b2

a13x1+a23x2+a32x3+a43x4?b3

Эти линейные неравенства представляют собой ограничения, накладываемые на элементы решения x1, x2, x3, x4.

Таким образом, поставленная задача сводится к следующей: найти такие неотрицательные значения переменных x1, x2, x3, x4, чтобы они удовлетворяли ограничениям - неравенствам и одновременно обращали в минимум линейную функцию этих переменных:

Задача о планировании производства.

ПОСТАНОВКА ЗАДАЧИ. Предприятие производит изделия трёх видов: U1, U2, U3. По каждому виду изделия предприятию спущен план, по которому оно обязано выпустить не мене b1 единиц изделия U1, не мене b2 единиц изделия U2 и не мене b3 единиц изделия U3. План может быть перевыполнен, но в определённых границах; условия спроса ограничивают количества произведённых единиц каждого типа: не более соответственно 1, 2, 3 единиц. На изготовление изделий идёт какое-то сырьё; всего имеется четыре вида сырья: s1, s2, s3, s4, причём запасы ограничены числами 1, 2, 3, 4 единиц каждого вида сырья. Теперь надо узнать какое количество сырья каждого вида идёт на изготовление каждого вида изделий. Обозначим aij количество единиц сырья вида si (I= 1, 2, 3, 4), потребное на изготовление одной единицы изделия Uj (j= 1, 2, 3). Первый индекс у числа aij - вид изделия, второй - вид сырья. Значения aij сведены в таблицу (матрицу).

Сырьё

Изделия

U1

U2

U3

S1

S2

S3

S4

a11

a12

a13

a14

a21

a22

a23

a24

a31

a32

a33

a34

При реализации одно изделие U1 приносит предприятию прибыль c1, U2 - прибыль c2, U3 - прибыль c3. Требуется так спланировать производство (сколько каких изделий производить), чтобы план был выполнен или перевыполнен (но при отсутствии «затоваривания»), а суммарная прибыль обращалась в максимум.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ. Элементами решения будут x1, x2, x3 - количества единиц изделий U1, U2, U3, которые мы произведём. Обязательность выполнения планового задания запишется в виде трёх ограничений - неравенств: x1b1, x2b2, x3b3.

Отсутствие изделий продукции (затоваривания) даёт нам ещё три ограничения - неравенства: x11, x22, x33.

Целевая функция:

L=c1x1+c2x2+c3x3> max.

Система ограничений:

a11x1+a21x2+a31x31.

a12x1+a22x2+a32x32.

a13x1+a23x2+a33x33.

a14x1+a24x2+a34x34.

оптимизация линейный планирование программирование

Задача о загрузки оборудования.

ПОСТАНОВКА ЗАДАЧИ. Ткацкая фабрика располагает двумя видами станков, из них N1 станков типа 1 и N2 станков типа 2.

Станки могут производить три вида тканей: T1, T2, T3, но с разной производительностью.

Данные aij производительности станков в таблице (первый индекс - тип станка, второй - вид ткани).

Каждый метр ткани вида T1 приносит фабрике доход c1, вида Т2 - доход с2, Т3 - доход с3.

Тип станка

Вид ткани

Т1

Т2

Т3

1

2

а11

а21

а12

а22

а13

а23

Фабрике предписан план согласно которому она должна производить в месяц не менее b1 метров ткани Т1, b2 метров ткани Т2, b3 метров ткани Т3; количество метров каждого вида ткани не должно превышать соответственно 1, 2, 3 метров. Кроме того, все без исключения станки должны быть загружены. Требуется так распределить загрузку станков производством тканей Т1, Т2, Т3, чтобы суммарный месячный доход был максимален.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ. Введём букву x с двумя индексами (первый - тип станка, второй - вид ткани). Всего будет шесть элементов решения: x11 x12 x13 x21 x22 x23 .

Здесь x11 - количество станков типа 1, занятых изготовлением ткани Т1, x12 - количество станков типа 1, занятых изготовлением ткани Т2 и т.д.

Запишем суммарный доход от производства всех видов тканей. Суммарное количество метров ткани Т1, произведённое всеми станками, будет равно a11x11+a21x21 и принесёт доход c1(a11x11+a21x21).

Целевая функция:

L=c1 (a11x11+a21x21)+c2 (a12x12+a22x22)+c3 (a13x13+a23x23) >max

Система ограничений:

Обеспечим выполнения плана ограничениями по минимальным параметрам:

a11x11+a21x21b1,

a12x12+a22x22b2,

a13x13+a23x23b3,

Ограничим выполнение плана по максимальным параметрам:

a11x11+a21x211,

a12x12+a22x222,

a13x13+a23x233,

Теперь запишем ограничения, связанные с наличием оборудования и его полной загрузкой. Суммарное количество станков типа 1, занятых изготовлением всех тканей, должно быть равно N1; типа 2 - N2.

x11+x12+x13=N1,

x21+x22+x23=N2,

линейный планирование программирование

Задача о снабжении сырьём.

ПОСТАНОВКА ЗАДАЧИ. Имеется три промышленных предприятия: П1, П2, П3, требующих снабжения определённым видом сырья. Потребности в сырье каждого предприятия равны соответственно a1, a2, a3 единиц. Имеются пять сырьевых баз, расположенных от предприятий на каких - то расстояниях и связанных с ними путями сообщения с разными тарифами. Единица сырья, получаемая предприятием Пi c базы Бj , обходится предприятию в сij рублей (1 индекс - номер предприятия, 2 - номер базы).

Возможности снабжения сырьём с каждой базы ограничены её производственной мощностью: базы Б1, Б2, Б3, Б4, Б5 могут дать не более b1, b2, b3, b4, b5 единиц сырья. Требуется составить такой план снабжения предприятий сырьём (с какой базы, куда и какое количество сырья везти), чтобы потребности предприятий были обеспечены при минимальных расходах на сырьё.

Предприятия

Базы

Б1

Б2

Б3

Б4

Б5

П1

П2

П3

С11

С21

С31

С12

С22

С32

С13

С23

С33

С14

С24

С34

С15

С25

С35

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ. Обозначим xij количества сырья с j - ой базы. Всего план будет состоять из 15 элементов решения: x11 x12 x13 x14 x15 x21 x22 x23 x24 x25 x31 x32 x33 x34 x35.

Целевая функция:

Система ограничений:

x11+x12+x13+x14+x15=a1,

x21+x22+x23+x24+x25=a2,

x31+x32+x33+x34+x35=a3,

x11+x21+x31b1,

x12+x22+x32b2,

x13+x23+x33b3, (4.3.)

x14+x24+x34b4,

x15+x25+x35b5,

Размещено на Allbest.ru

...

Подобные документы

  • Рассмотрение эффективности применения методов штрафов, безусловной оптимизации, сопряженных направлений и наискорейшего градиентного спуска для решения задачи поиска экстремума (максимума) функции нескольких переменных при наличии ограничения равенства.

    контрольная работа [1,4 M], добавлен 16.08.2010

  • Поиск оптимальных значений некоторых параметров в процессе решения задачи оптимизации. Сравнение двух альтернативных решений с помощью целевой функции. Теорема Вейерштрасса. Численные методы поиска экстремальных значений функций. Погрешность решения.

    презентация [80,6 K], добавлен 18.04.2013

  • Развитие численных линейных методов решения задач линейного программирования. Знакомство с методами поиска целевой функции: равномерный симплекс, методы Коши, Ньютона, сопряжённого градиенты, квазиньютоновский метод. Алгоритмы нахождения экстремума.

    курсовая работа [716,1 K], добавлен 12.07.2012

  • Численные методы поиска безусловного экстремума. Задачи безусловной минимизации. Расчет минимума функции методом покоординатного спуска. Решение задач линейного программирования графическим и симплексным методом. Работа с программой MathCAD.

    курсовая работа [517,9 K], добавлен 30.04.2011

  • Проектирование методов математического моделирования и оптимизации проектных решений. Использование кусочной интерполяции при решении задач строительства автомобильных дорог. Методы линейного программирования. Решение специальных транспортных задач.

    методичка [690,6 K], добавлен 26.01.2015

  • Основные понятия математического моделирования, характеристика этапов создания моделей задач планирования производства и транспортных задач; аналитический и программный подходы к их решению. Симплекс-метод решения задач линейного программирования.

    курсовая работа [2,2 M], добавлен 11.12.2011

  • Предназначена библиотеки "simplex" для оптимизации линейных систем с использованием симплексного алгоритма. Построение экономико-математической модели формирования плана производства. Основные виды транспортных задач, пример и способы ее решения.

    курсовая работа [477,9 K], добавлен 12.01.2011

  • Оптимизация как раздел математики, ее определение, сущность, цели, формулировка и особенности постановки задач. Общая характеристика различных методов математической оптимизации функции. Листинг программ основных методов решения задач оптимизации функции.

    курсовая работа [414,1 K], добавлен 20.01.2010

  • Математическое программирование - область математики, в которой изучаются методы решения задач условной оптимизации. Основные понятия и определения в задачах оптимизации. Динамическое программирование – математический метод поиска оптимального управления.

    презентация [112,6 K], добавлен 23.06.2013

  • Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.

    презентация [247,7 K], добавлен 20.02.2015

  • Обыкновенные и модифицированные жордановы исключения. Последовательность решения задач линейного программирования симплекс-методом применительно к задаче максимизации: составлении опорного плана решения, различные преобразования в симплекс-таблице.

    курсовая работа [37,2 K], добавлен 01.05.2011

  • Статистический подход к измерению правовой информации. Графический метод решения задач линейного программирования. Методика решения задач линейного программирования графическим методом. Количество информации как мера неопределенности состояния системы.

    контрольная работа [79,4 K], добавлен 04.06.2010

  • Формирование функции Лагранжа, условия Куна и Таккера. Численные методы оптимизации и блок-схемы. Применение методов штрафных функций, внешней точки, покоординатного спуска, сопряженных градиентов для сведения задач условной оптимизации к безусловной.

    курсовая работа [1,8 M], добавлен 27.11.2012

  • Общее понятие вектора и векторного пространства, их свойства и дополнительные структуры. Графический метод в решении задачи линейного программирования, его особенности и область применения. Примеры решения экономических задач графическим способом.

    курсовая работа [1,2 M], добавлен 14.11.2010

  • Применение функции Лагранжа в выпуклом и линейном программировании. Простейшая задача Больца и классического вариационного исчисления. Использование уравнения Эйлера-Лагранжа для решения изопериметрической задачи. Краевые условия для нахождения констант.

    курсовая работа [1,2 M], добавлен 16.01.2013

  • Методы решения задач с экономическим содержанием повышенного уровня сложности. Выявление структуры экономических задач на проценты. Вывод формул для решения задач на равные размеры выплат. Решение задач на сокращение остатка на одну долю от целого.

    курсовая работа [488,3 K], добавлен 22.05.2022

  • Сущность графического метода нахождения оптимального значения целевой функции. Особенности и этапы симплексного метода решения задачи линейного программирования, понятие базисных и небазисных переменных, сравнение численных значений результатов.

    задача [394,9 K], добавлен 21.08.2010

  • Сущность линейного программирования. Изучение математических методов решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейной целевой функцией. Нахождение точек наибольшего или наименьшего значения функции.

    реферат [162,8 K], добавлен 20.05.2019

  • Принцип максимума Понтрягина. Необходимое и достаточное условие экстремума для классической задачи на условный экстремум. Регулярная и нерегулярная задача. Поведение функции в различных ситуациях. Метод Ньютона решения задачи, свойства его сходимости.

    курсовая работа [1,4 M], добавлен 31.01.2014

  • История, понятия и методы решения задач на экстремум. Знаменитые задачи на максимум и минимум: Кеплера, Фаньяно, Дидоны и Ферма–Торричелли–Штейнера. Аналитический и геометрический методы как более подходящие инструменты решения с научной точки зрения.

    курсовая работа [483,0 K], добавлен 10.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.