Взгляд на математику и нечто из неё
Новый взгляд на историю возникновения математики как науки. Развития греческой арифметики. Дедуктивное построение предмета. Внутренние математические проблемы. Порядок систематических теорий. Аксиомы как натуральные числа. Доклады Гильберта и Пуанкаре.
Рубрика | Математика |
Предмет | Математика |
Вид | учебное пособие |
Язык | русский |
Прислал(а) | Аносов |
Дата добавления | 28.12.2013 |
Размер файла | 175,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Число как основное понятие математики. Натуральные числа. Простые числа Мерсенна, совершенные числа. Рациональные числа. Дробные числа. Дроби в Древнем Египте, Древнем Риме. Отрицательные числа. Комплексные, векторные, матричные, трансфинитные числа.
реферат [104,5 K], добавлен 12.03.2004Возникновение и основные этапы развития математики как науки о структурах, порядке и отношениях на основе операций подсчета, измерения и описания форм реальных объектов. Развитие знаний арифметики и геометрии в Древнем Востоке, Вавилоне и Древней Греции.
презентация [1,8 M], добавлен 17.12.2010Основные элементы теорий однородных и краевых задач Римана, Гильберта, Нетера. Использование различных способов регуляризации полных особых интегральных уравнений. Некоторые основные свойства особых союзных операторов. Уравнения Фредгольма и Пуанкаре.
курсовая работа [565,3 K], добавлен 17.02.2014Робота присвячена важливісті математики, їх використанню у різних галузях науки. Інформація, яка допоможе зацікавити учнів при вивченні математики. Етапи розвитку математики. Філософія числа піфагорійців. Математичні формули у фізиці, хімії, психології.
курсовая работа [347,2 K], добавлен 12.09.2009Пьер де Ферма сделал почти 370 лет назад свою запись на полях арифметики Диофанта. Натуральные взаимно простые числа, не имеющие общих целых множителей, кроме 1. Пример справедливости приведенного доказательства.
статья [31,8 K], добавлен 19.12.2006Обзор развития европейской математики в XVII-XVIII вв. Неравномерность развития европейской науки. Аналитическая геометрия. Создание математического анализа. Научная школа Лейбница. Общая характеристика науки в XVIII в. Направления развития математики.
презентация [1,1 M], добавлен 20.09.2015Геометрия Евклида как первая естественнонаучная теория. Структура современной математики. Основные черты математического мышления. Аксиоматический метод. Принципы аксиоматического построения научных теорий. Математические доказательства.
реферат [32,4 K], добавлен 10.05.2011Диофант Александрийский - древнегреческий математик и одна из загадок в истории математики. Диофантовы уравнения как математическая модель жизненных ситуаций. Задачи на разложение числа. Китайская теорема об остатках. Десятая проблема Гильберта.
реферат [374,9 K], добавлен 22.06.2014Теоретический курс математики и подробные указания его применения. Информация и задания по основным темам, рассчитанные на изучение математики в 10-11 классах на повышенном уровне, подготовка к различным видам тестирования и другим конкурсным испытаниям.
учебное пособие [772,1 K], добавлен 08.01.2012Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.
курсовая работа [104,1 K], добавлен 03.01.2008Модель Пуанкаре геометрии Лобачевского: вопрос о ее непротиворечивости. Инверсия, ее аналитическое задание. Преобразование окружности и прямой, сохранение углов при инверсии. Инвариантные прямые и окружности. Система аксиом геометрии Лобачевского.
дипломная работа [1,3 M], добавлен 10.09.2009Метод регуляризующего множителя для решения задачи Гильберта для аналитических функций в случае произвольной односвязной области. Постановка краевой задачи типа Гильберта в классе бианалитических функций, а также решение конкретных примеров задач.
дипломная работа [4,0 M], добавлен 20.05.2013Происхождение термина "математика". Одно из первых определений предмета математики Декартом. Сущность математики с точки зрения Колмогорова. Пессимистическая оценка возможностей математики Г Вейля. Формулировка Бурбаки о некоторых свойствах математики.
презентация [124,5 K], добавлен 17.05.2012Общие аксиомы конструктивной геометрии. Аксиомы математических инструментов. Постановка задачи на построение, методика решения задач. Особенности методик построения: одним циркулем, одной линейкой, двусторонней линейкой, построения с помощью прямого угла.
курс лекций [4,0 M], добавлен 18.12.2009Изучение последовательности чисел Фибоначчи. Вклад в математику Леонардо Пизанского. Золотое сечение в жизни и в природе, ее геометрическое изображение. Построение точки, делящей отрезок единичной длины. Золотой прямоугольник и спираль Фибоначчи.
презентация [421,5 K], добавлен 15.06.2017История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.
реферат [38,2 K], добавлен 09.10.2008Содержание математики как системы математических моделей и инструментов для их создания. Возникновение "теории идей". Натуральные числа, множество целых чисел, рациональное число, вещественное или действительное число. Существующая теория чисел.
реферат [81,7 K], добавлен 13.01.2011История возникновения и развития математической логики как раздела математики, изучающего математические обозначения и формальные системы. Применение математической логики в технике и криптографии. Взаимосвязь программирования и математической логики.
контрольная работа [50,4 K], добавлен 10.10.2014Особенности периода математики постоянных величин. Создание арифметики, алгебры, геометрии и тригонометрии. Общая характеристика математической культуры Древней Греции. Пифагорейская школа. Открытие несоизмеримости, таблицы Пифагора. "Начала" Евклида.
презентация [2,4 M], добавлен 20.09.2015Достижения древнегреческих математиков, живших в период между VI веком до н.э. и V веком н.э. Особенности начального периода развития математики. Роль пифагорейской школы в развитии математики: Платон, Евдокс, Зенон, Демокрит, Евклид, Архимед, Аполлоний.
контрольная работа [22,2 K], добавлен 17.09.2010