Геометрия комплексных чисел, кватернионов и спинов
Рассмотрение на евклидовой плоскости системы ортонормированных координат. Операции над комплексными числами. Теория стереографической проекции сферы на плоскость. Теорема интегрирования абелевых дифференциалов. Косы как деформирующиеся наборы точек.
Рубрика | Математика |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 28.12.2013 |
Размер файла | 282,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.
курсовая работа [104,1 K], добавлен 03.01.2008Понятие плоскости и определение ее положения в пространстве. Задание плоскости ее следами на комплексном чертеже. Плоскости и проекции уровня. Свойство проецирующих плоскостей собирать одноименные проекции всех элементов, расположенных в данной плоскости.
реферат [69,0 K], добавлен 17.10.2010Плоскость как простейший вид поверхности, ее задание тремя точками. Основные геометрические фигуры на плоскости. Определение геометрического места точек, примеры для угла и окружности. Сущность использования метода геометрических мест при решении задач.
курсовая работа [115,2 K], добавлен 10.01.2010Понятие комплексных чисел, стандартная, матричная и геометрическая модели; действия над комплексными числами; модуль и аргумент. Алгебраическое, тригонометрическое и показательное представление комплексных чисел. Формула Муавра и извлечение корней.
контрольная работа [25,7 K], добавлен 29.05.2012Метод координат как глубокий и мощный аппарат. Основные особенности декартовых координат на прямой, на плоскости и в пространстве. Понятие вектора как направленного отрезка. Рассмотрение координат вектора и важнейших в аналитической геометрии вопросов.
курсовая работа [573,7 K], добавлен 27.08.2012Расчет значений комплексных чисел в алгебраической, тригонометрической и показательной формах. Определение расстояния между точками на комплексной плоскости. Решение уравнения на множестве комплексных чисел. Методы Крамера, обратной матрицы и Гаусса.
контрольная работа [152,7 K], добавлен 12.11.2012Краткая историческая сводка о системе координат. Криволинейные, полярные и сферические системы координат. Рене Декарт - французский философ, физик и математик. Декартова прямоугольная система координат (на плоскости и в трёхмерном пространстве).
презентация [640,7 K], добавлен 29.06.2010Написание уравнения прямой, проходящей через определенную точку и удаленной от начала координат на заданное расстояние. Расчет длины высот параллелограмма. Построение плоскости и прямой, определение точки пересечения прямой и плоскости и угла между ними.
контрольная работа [376,1 K], добавлен 16.06.2012Теорема о проецировании прямого угла, возможные три случая такого проецирования. Главные линии плоскости: линии уровня и линии наибольшего наклона. Прямая, перпендикулярная к плоскости и ее проекции. Условие взаимной перпендикулярности двух плоскостей.
реферат [463,3 K], добавлен 17.10.2010Метод координат. Основные задачи аналитической геометрии на прямой и на плоскости. Основные линии второго порядка. Алгебраическая и геометрическая интерпретация векторов. Уравнение поверхности и уравнение линии в пространстве. Общее уравнение плоскости.
учебное пособие [687,5 K], добавлен 04.05.2011Начертательная геометрия - прикладная наука. Комплексный чертеж плоскости. Взаимные пересечения плоскостей, их перпендикулярность и параллельность с прямыми. Сечение поверхности сферы плоскостями. Пересечение поверхностей, аксонометрические проекции.
методичка [4,2 M], добавлен 03.02.2013Вектор в декартовой системе координат как упорядоченная пара точек (начало вектора и его конец). Линейные операции с векторами. Базис на плоскости и в пространстве. Свойства скалярного произведения. Кривые второго порядка. Каноническое уравнение параболы.
учебное пособие [312,2 K], добавлен 09.03.2009Азимутально-полярная проекция как проекция сферы на плоскость. Построение кругов параллелей и линий меридианов. Параллель как малый круг, полученный от сечения сферы плоскостью, параллельной плоскости экватора. Отображение меридианов и полюсов сферы.
контрольная работа [112,1 K], добавлен 13.05.2009Определение алгебраической линии на плоскости. Теорема о независимости порядка линии от выбора аффиной системы координат. Классификация алгебраической линии. Понятие алгебраической линии на плоскости и окружности как составляющих метода координат.
курсовая работа [197,3 K], добавлен 29.09.2014Комплексные числа и комплексные равенства, их алгебраическая и тригонометрическая формы. Арифметические действия над комплексными числами. Целые функции (многочлены) и их свойства. Решение алгебраических уравнений на множестве комплексных чисел.
лекция [464,6 K], добавлен 12.06.2011Определение и формула аффинного преобразования в сопряжённых комплексных координатах. Уравнение образа прямой при аффинном преобразовании. Частные виды аффинных преобразований в сопряжённых комплексных координатах.
дипломная работа [222,8 K], добавлен 08.08.2007Появление отрицательных чисел. Понятие мнимых и комплексных чисел. Формула Эйлера, связывающая показательную функцию с тригонометрической. Изображение комплексного числа на координатной плоскости. "Гиперкомплексные" числа Гамильтона ("кватернионы").
презентация [435,9 K], добавлен 16.12.2011Геометрическое представление комплексных чисел, алгебраическая и тригонометрическая формы. Свойства арифметических операций над комплексными числами: правила сложения (вычитания) их радиус-векторов, произведение (частное) модуля числа; формула Муавра.
презентация [147,4 K], добавлен 17.09.2013Определение производных сложных функций при заданном значении аргумента. Исследование траектории движения тела на плоскости и построение графика функции. Характеристика нахождения максимальных и минимальных точек, экстремумов и точек перегиба функции.
контрольная работа [790,1 K], добавлен 09.12.2011Понятие матрицы, эллипса, гиперболы и параболы. Системы уравнений с матрицами. Проекция вектора на ось и действия с векторами. Плоскость и прямые линии в пространстве, их взаимное расположение. Прямоугольная декартова система координат на плоскости.
контрольная работа [98,8 K], добавлен 30.11.2010