Теория вероятностей

Изучение основных формул комбинаторики. Анализ примеров абсолютно непрерывных распределений. Характеристика теоремы Пуассона для схемы Бернулли. Рассмотрение особенностей использования формулы свёртки. Изучение основных свойств коэффициента корреляции.

Рубрика Математика
Вид учебное пособие
Язык русский
Дата добавления 28.12.2013
Размер файла 868,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.


Подобные документы

  • Правила применения уравнения Бернулли для определения возможности наступления события. Использование формул Муавра-Лапласа и Пуассона при неограниченном возрастании числа испытаний. Примеры решения задач с помощью теоремы Бернулли о частоте вероятности.

    курсовая работа [265,6 K], добавлен 21.01.2011

  • Общая характеристика сходимости последовательностей случайных величин и вероятностных распределений. Значение метода характеристических функций в теории вероятностей. Методика решения задач о типах сходимости. Анализ теоремы Ляпунова и Линдеберга.

    курсовая работа [2,6 M], добавлен 22.07.2011

  • Закон распределения случайной величины дискретного типа (принимающей отдельные числовые значения). Предельные теоремы схемы Бернулли. Вычисление вероятности появления события по локальной теореме Муавра-Лапласа. Интегральная формула данной теоремы.

    презентация [611,2 K], добавлен 17.08.2015

  • Определение и оценка вероятности наступления заданного события. Методика решения задачи, с использованием теоремы сложения и умножения, формулы полной вероятности или Байеса. Применение схемы Бернулли при решении задач. Расчет квадратического отклонения.

    практическая работа [55,0 K], добавлен 23.08.2015

  • Теория вероятности, понятие вероятности события и её классификация. Понятие комбинаторики и её основные правила. Теоремы умножения вероятностей. Понятие и виды случайных величин. Задачи математической статистики. Расчёт коэффициента корреляции.

    шпаргалка [945,2 K], добавлен 18.06.2012

  • Преимущество использования формулы Бернулли, ее место в теории вероятностей и применение в независимых испытаниях. Исторический очерк жизни и деятельности швейцарского математика Якоба Бернулли, его достижения в области дифференциального исчисления.

    презентация [96,2 K], добавлен 11.12.2012

  • Особенности выполнения теоремы Бернулли на примере электрической схемы. Моделирование случайной величины по закону распределения Пуассона, заполнение массива. Теория вероятности, понятие ожидания, дисперсии случайной величины и закон распределения.

    курсовая работа [29,7 K], добавлен 31.05.2010

  • Теория вероятностей: биноминальный закон, закон Пуассона. Задачи. Независимо друг от друга 10 чел. Садятся в поезд, содержащий 15 вагонов. Вероятность того, что все они поедут в разных вагонах?

    лабораторная работа [30,0 K], добавлен 07.10.2002

  • Проверка выполнимости теоремы Бернулли на примере вероятности прохождения тока по цепи. Моделирование дискретной случайной величины, имеющей закон распределения Пуассона. Подтверждение гипотезы данного закона распределения с помощью критерия Колмогорова.

    курсовая работа [134,2 K], добавлен 31.05.2010

  • Основные понятия, которые касаются центральной предельной теоремы для независимых одинаково распределенных случайных величин и проверки статистических гипотез. Анализ сходимости последовательностей случайных величин и вероятностных распределений.

    курсовая работа [582,0 K], добавлен 13.11.2012

  • Функциональные и степенные ряды. Разложение функций в ряды Тейлора и Макларена. Теорема Дерихле. Основные понятия в теории вероятностей. Теорема умножения и сложения вероятностей независимых событий. Формулы Бейеса, Бернулли. Локальная теорема Лапласа.

    методичка [96,6 K], добавлен 25.12.2010

  • Основные принципы и формулы классической комбинаторики. Использование методов комбинаторики в теории вероятностей. Формулы числа перестановок, сочетаний, размещений. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Решение комбинаторных задач.

    учебное пособие [659,6 K], добавлен 07.05.2012

  • Статистическое, аксиоматическое и классическое определение вероятности. Дискретные случайные величины. Предельные теоремы Лапласа и Пуассона. Функция распределения вероятностей для многомерных случайных величин. Формула Байеса. Точечная оценка дисперсии.

    шпаргалка [328,7 K], добавлен 04.05.2015

  • Сущность понятия "комбинаторика". Историческая справка из истории развития науки. Правило суммы и произведения, размещения и перестановки. Общий вид формулы для вычисления числа сочетаний с повторениями. Пример решения задач по теории вероятностей.

    контрольная работа [293,2 K], добавлен 30.01.2014

  • Случайные события, их классификация. Свойство статистической устойчивости относительной частоты события. Предельные теоремы в схеме Бернулли. Аксиоматическое и геометрическое определение вероятности. Локальная и интегральная теоремы Муавра-Лапласа.

    реферат [1,4 M], добавлен 18.02.2014

  • Определение вероятности наступления события по формуле Бернулли. Построение эмпирической функции распределения и гистограммы для случайной величины. Вычисление коэффициента корреляции, получение уравнения регрессии. Пример решения задачи симплекс-методом.

    контрольная работа [547,6 K], добавлен 02.02.2012

  • Возникновение и развитие теории вероятностей и ее приложений. Решение классических парадоксов игры в кости и "азартных игр". Парадокс закона больших чисел Бернулли и Бертрана, дня рождения и раздачи подарков. Изучение парадоксов из книги Г. Секея.

    контрольная работа [64,8 K], добавлен 29.05.2016

  • Возникновение комбинаторики как раздела математики. Исследование на практических примерах особенностей чисел размещений с повторениями и без них. Анализ задач, решение которых опирается на правила комбинаторики и относящиеся к ней вычислительные формулы.

    курсовая работа [175,3 K], добавлен 05.01.2018

  • Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.

    контрольная работа [55,2 K], добавлен 19.12.2013

  • Характеристика основных правил и соединений комбинаторики. Классическая схема или схема случаев - испытание, при котором число исходов конечно и все из них равновозможные. Виды случайных событий. Дифференциальная функция распределения случайной величины.

    учебное пособие [149,3 K], добавлен 24.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.