Тройной интеграл
Сферические координаты точки в пространстве. Криволинейный интеграл по длине дуги. Формулы связи между декартовыми и сферическими данными. Оценка функций пространственной кривой. Изучение метода параметризации дуги. Криволинейный интеграл по координатам.
Рубрика | Математика |
Предмет | Математический анализ |
Вид | лекция |
Язык | русский |
Прислал(а) | chastinvest |
Дата добавления | 17.01.2014 |
Размер файла | 171,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.
контрольная работа [257,4 K], добавлен 23.02.2011Криволинейные и поверхностные интегралы. Криволинейный интеграл I и ІІ рода. Поверхностный интеграл I и ІІ рода. Формулы Грина, Остроградского-Гаусса, Стокса. Основные понятия теории поля. Скалярное поле. Производная скалярного поля по направлению.
курсовая работа [1,2 M], добавлен 09.12.2008Криволинейный интеграл первого и второго рода. Площадь области, ограниченной замкнутой кривой. Объем тела, образованного вращением замкнутой кривой. Центр масс и моменты инерции кривой. Магнитное поле вокруг проводника с током. Сущность закона Фарадея.
реферат [1,4 M], добавлен 09.01.2012Криволинейный интеграл первого рода. Двойной интеграл в декартовой и полярной системе координат. Интеграл по поверхности (первого рода). Приложение определенного интеграла в геометрии: площадь плоской фигуры и цилиндрической поверхности, объем тела.
методичка [517,1 K], добавлен 27.01.2012Интеграл по кривой, заданной уравнением y=y(x). Вычисление криволинейного интеграла. Кривая от точки А к В при изменении параметра. Непрерывные функции со своими производными. Отрезок параболы, заключенный между точками. Решение разными методами.
презентация [44,4 K], добавлен 17.09.2013Алгоритм вычисления интегральной суммы для функции нескольких переменных f(x, y) по плоской кривой АВ. Ознакомление с понятием криволинейного интеграла первого рода. Представление формулы расчета криволинейного интеграла по пространственной кривой.
презентация [306,9 K], добавлен 17.09.2013Определение определенного интеграла, его свойства. Длина дуги кривой. Площадь криволинейной трапеции. Площадь поверхности вращения. Площади фигур, ограниченных графиками функций, ограниченных линиями, заданными уравнениями. Вычисление объемов тел.
контрольная работа [842,6 K], добавлен 10.02.2017Моменты и центры масс плоских кривых. Теорема Гульдена. Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости дуги и ее не пересекающей, равна произведению длины дуги на длину окружности.
лекция [20,9 K], добавлен 04.09.2003Способы вычисления интегралов. Формулы и проверка неопределенного интеграла. Площадь криволинейной трапеции. Неопределенный, определенный и сложный интеграл. Основные применения интегралов. Геометрический смысл определенного и неопределенного интегралов.
презентация [1,2 M], добавлен 15.01.2014Применение формулы Грина к решению задач. Понятие ротора векторного поля. Вывод формулы Грина из формулы Стокса и ее доказательство. Определение непрерывно дифференцируемых функций. Применение формулы Грина для вычисления криволинейного интеграла.
курсовая работа [2,9 M], добавлен 11.07.2012Поверхностный интеграл как интеграл от функции, заданной какой-либо поверхности. Сущность и понятие поверхностного интеграла первого и второго рода, взаимосвязь между ними и вычисление. Формулы Остроградского и Стокса, их доказательство и применение.
курсовая работа [321,7 K], добавлен 09.10.2011Пределы последовательностей и функций. Производная и дифференциал. Геометрические изложения и дифференцированные исчисления (построение графиков). Неопределенный интеграл. Определенный интеграл. Функции нескольких переменных, дифференцированных исчислений
контрольная работа [186,9 K], добавлен 11.06.2003Определённый интеграл — аддитивный монотонный нормированный функционал, заданный на множестве пар, его компоненты, свойства. Вычисление определённого интеграла; формула Ньютона-Лейбница. Геометрические приложения: площадь, длина дуги, объем тела вращения.
презентация [308,0 K], добавлен 30.05.2013Алгоритм вычисления интегральной суммы для функции нескольких переменных по кривой АВ. Определение понятия криволинейного интеграла второго рода. Представление суммы интегралов двух функций вдоль кривой АВ как криволинейного интеграла общего вида.
презентация [69,4 K], добавлен 17.09.2013Производная определенного интеграла по переменному верхнему пределу. Вычисление определенного интеграла как предела интегральной суммы по формуле Ньютона–Лейбница, замена переменной и интегрирование по частям. Длина дуги в полярной системе координат.
контрольная работа [345,3 K], добавлен 22.08.2009Косвенный интеграл от функции, обращающейся в бесконечность в изолированной точке. Комплексный интеграл Пуассона. Абстрактный расходящийся ряд. Векторы. Аксиоматичный математический анализ. Эмпирический вектор. Экспериментальный интеграл Фурье.
реферат [24,3 K], добавлен 04.05.2008Общие свойства эллиптических интегралов и эллиптических функций. Параллелограммы периодов, основные теоремы. Эллиптические функции второго порядка. Вычисление длины дуги эллипса, эллиптические координаты, сумма вычетов эллиптической функции.
курсовая работа [289,0 K], добавлен 26.04.2011Решение задачи по нахождению площади криволинейной трапеции. Определение и свойства определённого интеграла. Необходимое условие интегрируемости и критерий Дарбу. Интегрируемость непрерывных и монотонных функций. Доказательство формулы Ньютона-Лейбница.
контрольная работа [383,6 K], добавлен 25.03.2011Вычисление площади фигуры, ограниченной заданными линиями, с помощью двойного интеграла. Расчет двойного интеграла, перейдя к полярным координатам. Методика определения криволинейного интеграла второго рода вдоль заданной линии и потока векторного поля.
контрольная работа [392,3 K], добавлен 14.12.2012Изучение теории кратных интегралов. Исследование понятия "двойной и тройной интеграл". Применение кратных интегралов для вычисления объема, массы, площади, моментов инерции, статистических моментов и координат центра масс тела на конкретных примерах.
курсовая работа [469,0 K], добавлен 13.12.2012