Скалярные и векторные поля

Понятие геометрического места точек как поверхностного уровня скалярного поля. Порядок определения скорости изменения поля по направлениям координатных осей. Сущность градиента функции, особенности расчета. Теорема об ортогональности вектора градиента.

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 17.01.2014
Размер файла 412,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.


Подобные документы

  • Изложение теории поля с помощью векторного анализа и составление пособия. Циркуляция векторного поля. Оператор Гамильтона и векторные дифференциальные операции второго порядка. Простейшие векторные поля. Применение теории поля в инженерных задачах.

    дипломная работа [190,2 K], добавлен 09.10.2011

  • Изучение теории поля с помощью векторного анализа. Векторные поля на плоскости и векторные линии. Вращение, вычисление и свойства дивергенции. Свойство аддитивности циркуляции полей. Ротор и его основные свойства. Рассмотрение формул Грина и Стокса.

    курсовая работа [649,8 K], добавлен 18.12.2011

  • Дослідження особливостей скалярного та векторного полів. Похідна за напрямом. Градієнт скалярного поля, потенціальне поле. Сутність дивергенції, яка характеризує густину джерел даного векторного поля в розглянутій точці. Ротор або вихор векторного поля.

    реферат [244,3 K], добавлен 06.03.2011

  • Специальные векторные поля. Теорема Стокса. Потенциальное, соленоидальное поле. Теорема Остроградского-Гаусса. Поток и определение вектора, направленного в отрицательную сторону оси. Дивергенция, свойства и интенсивностью векторной трубки.

    реферат [369,7 K], добавлен 23.02.2011

  • Математическое объяснение понятия и свойств скалярного поля. Формулы расчета нормали к поверхности. Вычисление потока векторного поля через прямой круговой цилиндр с заданным радиусом основания. Доказательство теорем Остроградского-Гаусса и Стокса.

    реферат [264,0 K], добавлен 11.02.2011

  • Определение понятия поверхностного интеграла первого и второго рода, их основные свойств, примеры вычисления и его перевода в обыкновенный двойной. Рассмотрение потока векторного поля через поверхность, как механического смысла поверхностного интеграла.

    контрольная работа [157,6 K], добавлен 24.01.2011

  • Изменение порядка интегрирования функции. Расчет площади фигуры, ограниченной графиками функций. Поиск предела интегрирования. Определение производной скалярного поля в точке по направлению вектора. Поиск объема тела, ограниченного поверхностями.

    контрольная работа [249,8 K], добавлен 28.03.2014

  • Конструкции и свойства конечных полей. Понятие степени расширения, определенность поля разложения, примитивного элемента, строение конечной мультипликативной подгруппы поля. Составление программы, которая позволяет проверить функцию на примитивность.

    курсовая работа [19,2 K], добавлен 18.12.2011

  • Криволинейные и поверхностные интегралы. Криволинейный интеграл I и ІІ рода. Поверхностный интеграл I и ІІ рода. Формулы Грина, Остроградского-Гаусса, Стокса. Основные понятия теории поля. Скалярное поле. Производная скалярного поля по направлению.

    курсовая работа [1,2 M], добавлен 09.12.2008

  • Изменение порядка интегрирования функции. Поиск предела интегрирования. Расчет площади фигуры, ограниченной графиками функций. Поиск объема тела, ограниченного поверхностями. Определение производной скалярного поля в точке по направлению вектора.

    контрольная работа [233,2 K], добавлен 28.03.2014

  • Операции в скалярных и векторных полях. Наиболее распространенные типы векторных полей и задачи, которые возникают при изучении этих полей. Потенциальное, гармоническое и соленоидальное векторное поле. Векторный потенциал поля. Задачи Дирихле и Неймана.

    курсовая работа [294,8 K], добавлен 07.11.2013

  • Изучение методики расчета температурных полей, использующей традиционный конечный элемент и введенный коэффициент учета объемности поля. Порядок математического моделирования задачи механики сплошных сред. Преимущества и недостатки численного решения.

    курсовая работа [781,4 K], добавлен 28.12.2012

  • Диференціальні операції другого порядку. Потік векторного поля. Формула Остроградського-Гаусса в векторній формі. Властивості соленоїдального поля. Інваріантне означення дивергенції. Формула Стокса у векторній формі. Властивості потенціального поля.

    реферат [237,9 K], добавлен 15.03.2011

  • Особенности неподвижного геометрического трехмерного пространства, его отличительные признаки от подвижного пространства. Отличия физической сущности скорости от математической. Понятие производной вектора по времени, методика и этапы ее определения.

    статья [174,3 K], добавлен 25.12.2010

  • Основные определения и свойства скалярного произведения. Необходимое и достаточное условие перпендикулярности векторов. Проекция произвольного вектора. Геометрический смысл скалярного произведения. Проведение нормализации вектора, его направление.

    курсовая работа [491,4 K], добавлен 13.01.2014

  • Вычисление площади фигуры, ограниченной заданными линиями, с помощью двойного интеграла. Расчет двойного интеграла, перейдя к полярным координатам. Методика определения криволинейного интеграла второго рода вдоль заданной линии и потока векторного поля.

    контрольная работа [392,3 K], добавлен 14.12.2012

  • Аналитическое и компьютерное исследования уравнения и модели Ван-дер-Поля. Сущность и особенности применения методов Эйлера и Рунге-Кутта 4 порядка. Сравнение точности метода Эйлера и Рунге-Кутта на одном графике, рисуя фазовые траектории из 1 точки.

    курсовая работа [341,7 K], добавлен 06.10.2012

  • Сущность математической теории скалярных и векторных полей, ее основные понятия и определения. Характерные черты и отличительные признаки скалярных и векторных полей, доказательства их главных теорем.

    лекция [121,6 K], добавлен 11.02.2010

  • История развития алгебры как научной дисциплины. Расширения Галуа как универсальный метод решения уравнений любой степени. Определение понятия коммуникативной (абелевой) группы. Сущность кольца и его свойства. Примеры использования конечного поля.

    реферат [50,0 K], добавлен 28.05.2014

  • Плоскость как простейший вид поверхности, ее задание тремя точками. Основные геометрические фигуры на плоскости. Определение геометрического места точек, примеры для угла и окружности. Сущность использования метода геометрических мест при решении задач.

    курсовая работа [115,2 K], добавлен 10.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.