История возникновения чисел и цифр

Подобие цифр у древних людей. Римская система нумерации. Возникновение и особенности написание арабских цифр. Буквенное обозначение чисел у славянских народов. Десятичная и двоичная системы счисления. Таблицы сложения и умножения для однозначных чисел.

Рубрика Математика
Вид творческая работа
Язык русский
Дата добавления 04.02.2014
Размер файла 456,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МОУ Детчинская средняя общеобразовательная школа

Ознакомительно-ориентировочный проект

на тему: "История возникновения чисел и цифр"

Подготовили: учащиеся 6 "а" класса

Никишина Вероника,

Романова Екатерина

Преподаватель: Кондратенко Е.Б.

2010-2011

Введение

С самого раннего возраста человек сталкивается с необходимостью считать. Однако, научившись считать, люди мало знают о том, откуда появились числа, кто придумал использовать ту или иную форму записи числа. Проведенный нами опрос показал, что некоторые учащиеся нашей школы, а также наши родители не смогли дать ответ на вопрос: " Как и где возникли первые числа?". Встречаясь с цифрами на каждом шагу, мы настолько привыкли к их существованию, что вряд ли задумываемся, а откуда же они взялись. А, между прочим, история их возникновения чрезвычайно увлекательна. Поэтому мы решили изучить историю возникновения чисел и представить полученный материал другим учащимся, который можно так же использовать на уроках математики.

Тема актуальна и может представлять интерес как для широкого круга общественности, так и для специалистов в области алгебры и геометрии. В современных условиях очень важно каждому человеку правильно понимать законы чисел. Числа - являются необходимой частью математики.

1. Цели и задачи проекта

Цель: Изучить историю возникновения чисел и цифр.

Задачи:

1. Изучить имеющеюся литературу по теме проекта.

2. Подготовить презентацию по теме проекта.

2. Из истории возникновения чисел

Сначала были…пальцы. Весьма универсальное, удобное и сподручное средство для счёта. Его используют и до сих пор, правда, лишь в том случае, если нужно показать небольшое, ограниченное одним десятком число (здесь учитываем лишь возможности рук, пальцы ног не в счёт). Не удивительно, что очень быстро назрела потребность в других, более совершенных символах счёта.

У первобытных народов существовало развитой системы счисления. Еще в ХIХ веке у многих племен Австралии и Полинезии было только два обозначения - для числа "один" и для числа "два". Эти обозначения комбинировали. Число "три" они называли "два один", число "четыре"- "два и два", число "пять"- "два, два и один", число "шесть"-"два, два и два". а числа, большие шести, они не различали и называли словом "много".

Первое подобие цифр возникло около пяти тысяч лет назад в Египте и Месопотамии и представляло собой засечки на дереве или камнях. Египетские жрецы использовали для письма папирус, а в Месопотамии для этих целей служила мягкая глина. Цифры тех времён обозначались чёрточками для единиц и различными другими метками для десятков и более высоких порядков.

Интересно то, что записи носили не только счётный характер, но и математический: древние египтяне, как известно, достигли потрясающих высот в арифметике и геометрии. Когда появились иероглифы, цифры стали записывать через них.

Следующий этап в истории цифр принадлежит древним римлянам. Изобретенная ими система исчисления основана на использовании букв для отображения чисел. Так, они применяли в своей системе буквы "I", "V", "L", "C", "D", и "M". цифра число римская двоичная

Не всем для записи чисел понадобилось столько символов. Например, майя в первом тысячелетии нашей эры писали любое число, используя лишь три знака: точку, линию и эллипс. Точка означала единицу, линия имела значение пяти, а эллипс, находясь под любым из этих знаков, увеличивал его значение в двадцать раз. Подобная минимизация отнюдь не приводила к упрощению записи: для обозначения того или иного числа приходилось использовать длинные ряды символов.

Современные привычные для нас цифры имеют арабское происхождение. Хотя арабы в свою очередь заимствовали их у индусов, видоизменив их и приспособив к своему письму. Характер написания каждой из девяти арабских цифр хорошо прослеживается, если записать их в "угловатой" форме. Количество углов каждой цифры соответствует количеству, которое эта цифра обозначает. Привычные нам формы цифр более округлые. Это влияние скорописи: так цифры записывать быстрее и удобнее.

Десятичная система, которой широко пользуется в настоящее время во всем мире, более совершенна. Вместо палочек, взятых от одной до девяти, используют цифры 1, 2, 3, 4, 5, 6, 7, 8, 9. Для обозначения десятков, сотен и т.д. не нужны новые значки, так как те же цифры используют и для записи десятков, сотен и т.д. Одна и та же цифра имеет различные значения в зависимости от места (позиции), где она записана. Благодаря этому свойству современную систему счисления называют позиционной. Десятичная позиционная система счисления позволяет записывать сколь угодно большие натуральные числа.

Народы пришли к этой системе постепенно. Она зародилась в Индии в V веке. В IХ веке ею уже владели арабы, в Х она дошла до Испании, а в ХII веке появилась в других странах Европы, но широкое распространение получила в ХVI веке. Долгое время развитие позиционной системы счисления тормозилось отсутствием в ней числа и цифры нуль. Только после введения нуля система стала совершенной.

В России десятичная система счисления начала распространяться в ХVII веке. В 1703 году был издан первый печатный учебник математики - "Арифметика" Л.Ф. Магницкого, в котором все вычисления велись в десятичной системе записи чисел.

До этого числа записывали буквами славянского алфавита. Числа от 1 до 9 записывали так:

Над одной или несколькими буквами ставили особый знак (титло), чтобы подчеркнуть, что полученная запись не буква, не слово, а число:

Интересно, что числа от 11 (один-на-десять) до 19 (девять-на-десять) записывали так же, как говорили. То есть "цифру" единиц ставили до "цифры" десятков.

В некоторых странах использовались системы счисления с другими основаниями -5, 12, 20, 60. Например, древняя вавилонская система счисления была шестидесятеричная. Следы этой системы сохранились сейчас в единицах измерения времени:

1 ч=60 мин, 1 мин=60 с.

Примером непозиционной системы счисления без нуля может служить римская система. В ней числа записывают с помощью следующих цифр:

I=1, V=5, X=10, L=50, C=100, D=500, M=1000.

Если меньшая цифра стоит после большей, то она прибавляется к большей: ХV=15, ХVI=16. Если меньшая цифра стоит перед большей, то она вычитается из большей: IV=4, IХ=40, ХС=90, СD=400, CM=900. В других случаях правило вычитания не применяется. Числа от 1 до 21 обозначают так:

I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV, XV, XVI, XVII, XVIII, XIX, XX, XXI.

Используя римскую систему счисления, запишем год выхода "Арифметики" Л.Ф. Магницкого-MDCCIII. Это 1000+500+200+3=1703 год.

Римскую систему нумерации используют и сейчас для обозначения веков, глав в книгах и т.п.

В электронно-вычислительных машинах используется двоичная система счисления, в которой всего две цифры 0 и 1. Для примера запишем в двух системах числа от 0 до 9.

Таблицы сложения и умножения для однозначных чисел двоичной системы счисления очень просты:

Вот несколько примеров на сложение, вычитание и умножение в двоичной системе:

3. Задача

На одной из старых улиц Москвы стоят два дома, на фасадах которых обозначены даты их постройки:

MDCCCCV и MDCCCLXXXXIX

В каком году построен каждый дом?

Ответ.

Первый дом был построен в 1905 году.

Второй дом был построен в 1899 году.

Вот, что о происхождении цифр, нам сообщает Большая Советская Энциклопедия:

"Древнейшие известные нам цифры - цифры вавилонян и египтян. Вавилонские Ц. (2-е тыс. до н. э. - начало н. э.) представляют собой клинописные знаки для чисел 1, 10, 100 (или только для 1 и 10), все остальные натуральные числа записываются посредством их соединения. В египетской иероглифической нумерации (возникновение её относится к 2500-3000 до н. э.) существовали отдельные знаки для обозначения единиц десятичных разрядов (вплоть до 107). Нумерациями типа египетской иероглифической являются финикийская, сирийская, пальмирская, греческая, аттическая или геродианова".

"Возникновение аттической нумерации относится к 6 в. до н. э.: нумерация употреблялась в Аттике до 1 в. н. э., хотя в других греческих землях она была задолго до этого вытеснена более удобной алфавитной ионийской нумерацией, в которой единицы, десятки и сотни обозначались буквами алфавита. все остальные числа до 999 - их соединением (первые записи чисел в этой нумерации относятся к 5 в. до н. э.). Алфавитное обозначение чисел существовало также и у др. народов; например, у арабов, сирийцев, евреев, грузин, армян. Старинная русская нумерация (возникшая около 10 в. и встречавшаяся до 16 в.) также была алфавитной с применением славянской азбуки кириллицы. Наиболее долговечной из древних цифровых систем оказалась римская нумерация, возникшая у этрусков около 500 до н. э.: она употребляется иногда и в настоящее время".

"Прообразы современных Ц. (включая нуль) появились в Индии, вероятно, не позднее 5 в. н. э. [до этого в Индии пользовались Ц. карошти и наряду с ними нумерацией. Ц. которой сходны с буквами алфавита брами, цифры из надписи в пещере Назик (или Насик)]. Удобство записи чисел при помощи этих Ц. в десятичной позиционной системе счисления обусловило их распространение из Индии в др. страны. В Европу индийские Ц. были занесены в 10-13 вв. арабами (отсюда и сохранившееся поныне их др. название - "арабские" Ц.) и получили всеобщее распространение со 2-й половины 15 в".

Размещено на Allbest.ru

...

Подобные документы

  • История возникновения и развития арабских цифр, особенности их написания, удобство по сравнению с другими системами. Знакомство с цифрами разных народов: системой счисления Древнего Рима, китайскими, деванагари и их развитием от древности, до наших дней.

    реферат [276,4 K], добавлен 22.01.2011

  • Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника и наука вообще. История цифр. Числа и счисление. Способы запоминания чисел.

    реферат [42,5 K], добавлен 13.04.2008

  • Система счисления, применяемая в современной математике, используемые в ЭВМ. Запись чисел с помощью римских цифр. Перевод десятичных чисел в другие системы счисления. Перевод дробных и смешанных двоичных чисел. Арифметика в позиционных системах счисления.

    реферат [75,2 K], добавлен 09.07.2009

  • Как люди научились считать, возникновение цифр, чисел и систем счисления. Таблица умножения на "пальцах": методика умножения для чисел 9 и 8. Примеры быстрого счета. Способы умножения двузначного числа на 11, 111, 1111 и т.д. и трехзначного числа на 999.

    курсовая работа [66,8 K], добавлен 22.10.2011

  • Ознакомление с записью чисел в алфавитной системе счисления. Особенности установления числовых значений букв у славянских народов. Рассмотрение записи больших чисел в славянской системе счисления. Обозначение "тем", "легионов", "леордов" и "колод".

    презентация [1,0 M], добавлен 30.09.2012

  • Новый способ умножения чисел. Схожесть образующейся при вычислении матрицы из цифр, с треугольником относительна, но все же есть, особенно при умножении трехзначных чисел и выше. Треугольная матрица.

    статья [7,6 K], добавлен 06.02.2005

  • Свойства чисел натурального ряда. Периодическая зависимость от порядковых номеров чисел. Шестеричная периодизация чисел. Область отрицательных чисел. Расположение простых чисел в соответствии с шестеричной периодизацией.

    научная работа [20,2 K], добавлен 29.12.2006

  • Понятие системы счисления. История развития систем счисления. Понятие натурального числа, порядковые отношения. Особенности десятичной системы счисления. Общие вопросы изучения нумерации целых неотрицательных чисел в начальном курсе математики.

    курсовая работа [46,8 K], добавлен 29.04.2017

  • Математическая теория чисел. Понятие систем счисления. Применения двоичной системы счисления. Компьютерная техника и информационные технологии. Алфавитное неравномерное двоичное кодирование. Достоинства и недостатки двоичной системы счисления.

    реферат [459,5 K], добавлен 25.12.2014

  • Закон сохранения количества чисел Джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Структура натурального ряда чисел. Изоморфные свойства рядов четных и нечетных чисел. Фрактальная природа распределения простых чисел.

    монография [575,3 K], добавлен 28.03.2012

  • Исследование истории систем счисления. Описание единичной и двоичной систем счисления, древнегреческой, славянской, римской и вавилонской поместной нумерации. Анализ двоичного кодирования в компьютере. Перевод чисел из одной системы счисления в другую.

    контрольная работа [892,8 K], добавлен 04.11.2013

  • История комплексных чисел. Соглашение о комплексных числах. Геометрический смысл сложения и вычитания комплексных чисел. Геометрическая интерпретация комплексных чисел. Длина отрезка. Уравнение высших степеней, уравнение деления круга на пять частей.

    реферат [325,7 K], добавлен 25.10.2012

  • Система, свойства и модели комплексных чисел. Категоричность и непротиворечивость аксиоматической теории комплексных чисел. Корень четной степени из отрицательного числа. Матрицы второго порядка, действительные числа. Операции сложения и умножения матриц.

    курсовая работа [1,1 M], добавлен 15.06.2011

  • Вивчення властивостей натуральних чисел. Нескінченість множини простих чисел. Решето Ератосфена. Дослідження основної теореми арифметики. Асимптотичний закон розподілу простих чисел. Характеристика алгоритму пошуку кількості простих чисел на проміжку.

    курсовая работа [79,8 K], добавлен 27.07.2015

  • Этапы развития натуральных чисел. Сущность метода "решето Эратосфена" и проблемы Гольдбаха. Свойства, законы и закономерности фигурных, многоугольных, совершенных, дружественных, компанейских цифр. Мистические представления о значениях 666 и 1001.

    реферат [169,9 K], добавлен 18.01.2011

  • Исторические факты исследования простых чисел в древности, настоящее состояние проблемы. Распределение простых чисел в натуральном ряде чисел, характер и причина их поведения. Анализ распределения простых чисел-близнецов на основе закона обратной связи.

    статья [406,8 K], добавлен 28.03.2012

  • Збагачення запасу чисел, введення ірраціональних чисел. Зведення комплексних чисел у ступінь і знаходження кореня. Окремий випадок формули Муавра. Труднощі при витягу кореня з комплексних чисел. Витяг квадратного кореня із негативного дійсного числа.

    курсовая работа [130,8 K], добавлен 26.03.2009

  • Комплексный обзор и систематизация задач математических школьных и районных олимпиад для 8-9 классов. Решение числовых ребусов, уравнений с неизвестными и восстановление цифр натуральных чисел. Логические задачи, стратегии, комбинаторика и тождества.

    курсовая работа [668,4 K], добавлен 30.09.2011

  • Характеристика истории изучения значения простых чисел в математике путем описания способов их нахождения. Вклад Пьетро Катальди в развитие теории простых чисел. Способ Эратосфена составления таблиц простых чисел. Дружественность натуральных чисел.

    контрольная работа [27,8 K], добавлен 24.12.2010

  • Сведения о семье Якоба Бернулли, его тайное увлечение математикой в юности и последующий вклад в развитие теории вероятности. Составление ученым таблицы фигурных чисел и выведение формул для сумм степеней натуральных чисел. Расчет значений чисел Бернулли.

    презентация [422,7 K], добавлен 02.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.