Случайные события. Вычисление вероятности

Использование правила суммы и правила произведения при решении задач комбинаторики. Классическое и геометрическое определение вероятности. Формула полной вероятности и формула Байеса. Схема и примеры повторных независимых испытаний (схема Бернулли).

Рубрика Математика
Вид учебное пособие
Язык русский
Дата добавления 16.02.2014
Размер файла 299,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Учебник по теории вероятности

Случайные события. Вычисление вероятности

Содержание

1.1 Элементы комбинаторики

1.2 Классическое определение вероятности

1.3 Геометрическое определение вероятности

1.4 Сложение и умножение вероятностей

1.5 Условная вероятность

1.6 Формула полной вероятности и формула Байеса

1.7 Независимые испытания. Формула Бернулли

1.8 Наивероятнейшее число успехов

1.9 Формула Пуассона

1.10 Теоремы Муавра-Лапласа

1.1 Элементы комбинаторики

Рассмотрим некоторое множество Х, состоящее из n элементов . Будем выбирать из этого множества различные упорядоченные подмножества из k элементов.

Размещением из n элементов множества Х по k элементам назовем любой упорядоченный набор элементов множества Х.

Если выбор элементов множества из Х происходит с возвращением, т.е. каждый элемент множества Х может быть выбран несколько раз, то число размещений из n по k находится по формуле (размещения с повторениями).

Если же выбор делается без возвращения, т.е. каждый элемент множества Х можно выбирать только один раз, то количество размещений из n по k обозначается и определяется равенством

Пример. Пусть даны шесть цифр: 1; 2; 3; 4; 5; 6. Определить сколько трехзначных чисел можно составить из этих цифр.

Решение. Если цифры могут повторяться, то количество трехзначных чисел будет . Если цифры не повторяются, то .

Пример. Студенты института изучают в каждом семестре по десять дисциплин. В расписание занятий включаются каждый день по 3 дисциплины. Сколько различных расписаний может составить диспетчерская?

Решение. Расписание на каждый день может отличаться либо предметами, либо порядком расположения этих предметов, поэтому имеем размещения:

Частный случай размещения при n=k называется перестановкой из n элементов. Число всех перестановок из n элементов равно
.

Пример. 30 книг стоит на книжной полке, из них 27 различных книг и одного автора три книги. Сколькими способами можно расставить эти книги на полке так, чтобы книги одного автора стояли рядом?

Решение. Будем считать три книги одного автора за одну книгу, тогда число перестановок будет . А три книги можно переставлять между собой способами, тогда по правилу произведения имеем, что искомое число способов равно: *=3!*28!

Пусть теперь из множества Х выбирается неупорядоченное подмножество (порядок элементов в подмножестве не имеет значения). Сочетаниями из n элементов по kназываются подмножества из k элементов, отличающиеся друг от друга хотя бы одним элементом. Общее число всех сочетаний из n по k обозначается и равно

.

Справедливы равенства:

,

Размещено на http://www.allbest.ru/

, .

Пример.

Размещено на http://www.allbest.ru/

В группе из 27 студентов нужно выбрать трех дежурных. Сколькими способами можно это сделать?

Решение. Так как порядок студентов не важен, используем формулу для числа сочетаний:

При решении задач комбинаторики используют следующие правила:

Правило суммы. Если некоторый объект А может быть выбран из совокупности объектов m способами, а другой объект В может быть выбран n способами, то выбрать либо А, либо В можно m + n способами.

Правило произведения. Если объект А можно выбрать из совокупности объектов m способами и после каждого такого выбора объект В можно выбрать n способами, то пара объектов (А, В) в указанном порядке может быть выбрана m*n способами.

Пример. Наряд студентки состоит из блузки, юбки и туфель. Девушка имеет в своем гардеробе четыре блузки, пять юбок и трое туфель. Сколько нарядов может иметь студентка?

Решение. Пусть сначала студентка выбирает блузку. Этот выбор может быть совершен четырьмя способами, так как студентка имеет четыре блузки, затем пятью способами произойдет выбор юбки и тремя способами выбор туфель. По принципу умножения получается 4*5*3=60 нарядов (комбинаций).

1.2 Классическое определение вероятности

Основным понятием теории вероятностей является понятие случайного события. Случайным событием называется событие, которое при осуществлении некоторых условий может произойти или не произойти. Например, попадание в некоторый объект или промах при стрельбе по этому объекту из данного орудия является случайным событием.

Событие называется достоверным, если в результате испытания оно обязательно происходит. Невозможным называется событие, которое в результате испытания произойти не может.

Случайные события называются несовместными в данном испытании, если никакие два из них не могут появиться вместе.

Случайные события образуют полную группу, если при каждом испытании может появиться любое из них и не может появиться какое-либо иное событие, несовместное с ними.

Рассмотрим полную группу равновозможных несовместных случайных событий. Такие события будем называть исходами. Исход называется благоприятствующим появлению события А, если появление этого события влечет за собой появление события А.

Пример. В урне находится 8 пронумерованных шаров (на каждом шаре поставлено по одной цифре от 1 до 8). Шары с цифрами 1, 2, 3 красные, остальные - черные. Появление шара с цифрой 1 (или цифрой 2 или цифрой 3) есть событие, благоприятствующее появлению красного шара. Появление шара с цифрой 4 (или цифрой 5, 6, 7, 8) есть событие, благоприятствующее появлению черного шара.

Вероятностью события A называют отношение числа m благоприятствующих этому событию исходов к общему числу n всех равновозможных несовместных элементарных исходов, образующих полную группу

Свойство 1. Вероятность достоверного события равна единице.

Свойство 2. Вероятность невозможного события равна нулю.

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Итак, вероятность любого события удовлетворяет двойному неравенству .

Пример. В урне 10 пронумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превосходит 10?

Решение. Пусть событие А = (Номер вынутого шара не превосходит 10). Число случаев благоприятствующих появлению события А равно числу всех возможных случаевm=n=10. Следовательно, Р(А)=1. Событие А достоверное.

Пример. В урне 10 шаров: 6 белых и 4 черных. Вынули два шара. Какова вероятность, что оба шара белые?

Решение. Вынуть два шара из десяти можно следующим числом способов:

.

Число случаев, когда среди этих двух шаров будут два белых, равно

.

Искомая вероятность

.

Пример. В урне 15 шаров: 5 белых и 10 черных. Какова вероятность вынуть из урны синий шар?

Решение. Так как синих шаров в урне нет, то m=0, n=15. Следовательно, искомая вероятность р=0. Событие, заключающееся в вынимании синего шара, невозможное.

Пример. Из колоды в 36 карт вынимается одна карта. Какова вероятность появления карты червовой масти?

Решение. Количество элементарных исходов (количество карт) n=36. Событие А = (Появление карты червовой масти). Число случаев, благоприятствующих появлению события А, m=9. Следовательно,

.

Пример. В кабинете работают 6 мужчин и 4 женщины. Для переезда наудачу отобраны 7 человек. Найти вероятность того, что среди отобранных лиц три женщины.

Решение. Общее число возможных исходов равно числу способов, которыми можно отобрать 7 человек из 10, т.е.

.

Найдем число исходов, благоприятствующих интересующему нас событию: трех женщин можно выбрать из четырех способами; при этом остальные четыре человека должны быть мужчинами, их можно отобрать способами. Следовательно, число благоприятствующих исходов равно

.

Искомая вероятность

1.3 Геометрическое определение вероятности

Пусть случайное испытание можно представить себе как бросание точки наудачу в некоторую геометрическую область G (на прямой, плоскости или пространстве). Элементарные исходы - это отдельные точки G, любое событие - это подмножество этой области, пространства элементарных исходов G. Можно считать, что все точки G «равноправны» и тогда вероятность попадания точки в некоторое подмножество пропорционально его мере (длине, площади, объему) и не зависит от его расположения и формы.

Геометрическая вероятность события А определяется отношением:

,

где m(G), m(A) - геометрические меры (длины, площади или объемы) всего пространства элементарных исходов и события А.

Пример. На плоскость, разграфленную параллельными полосами шириной 2d, расстояние между осевыми линиями которых равно 2D, наудачу брошен круг радиуса r (). Найти вероятность того, что круг пересечет некоторую полосу.

Решение. В качестве элементарного исхода этого испытания будем считать расстояние xот центра круга до осевой линии ближайшей к кругу полосы. Тогда все пространство элементарных исходов - это отрезок . Пересечение круга с полосой произойдет в том случае, если его центр попадет в полосу, т.е. , или будет находится от края полосы на расстоянии меньшем чем радиус, т.е. .

Для искомой вероятности получаем:

.

1.4 Сложение и умножение вероятностей

Событие А называется частным случаем события В, если при наступлении А наступает и В. То, что А является частным случаем В, записываем .

События А и В называются равными, если каждое из них является частным случаем другого. Равенство событий А и В записываем А = В.

Суммой событий А и В называется событие А + В, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий: А или В.

Теорема о сложении вероятностей. Вероятность появления одного из двухнесовместных событий равна сумме вероятностей этих событий.

Заметим, что сформулированная теорема справедлива для любого числа несовместных событий:

.

Если случайные события образуют полную группу несовместных событий, то имеет место равенство

.

Произведением событий А и В называется событие АВ, которое наступает тогда и только тогда, когда наступают оба события: А и В одновременно. Случайные события А и Bназываются совместными, если при данном испытании могут произойти оба эти события.

Теорема о сложении вероятностей 2. Вероятность суммы совместных событий вычисляется по формуле

.

События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Теорема об умножении вероятностей. Вероятность произведения независимых событий А и В вычисляется по формуле:

.

Вероятность произведения зависимых событий вычисляется по формуле условной вероятности (см. следующий раздел).

Пример. В первом ящике 1 белый и 5 черных шаров, во втором 8 белых и 4 черных шара. Из каждого ящика вынули по шару. Найти вероятность того, что один из вынутых шаров белый, а другой - черный.

Решение. Обозначим события: А - вынули белый шар из первого ящика,

;

- вынули черный шар из первого ящика,

;

В - белый шар из второго ящика

;

- черный шар из второго ящика,

.

Нам нужно, чтобы произошло одно из событий или . По теореме об умножении вероятностей

, .

Тогда искомая вероятность по теореме сложения будет

.

Пример. Вероятность попадания в цель у первого стрелка 0,8, у второго - 0,9. Стрелки делают по выстрелу. Найти вероятность: а) двойного попадания; б) хотя бы одного попадания; г) одного попадания.

Решение.

Пусть А - попадание первого стрелка, ;

В - попадание второго стрелка, .

Тогда - промах первого,

;

- промах второго, .

Найдем нужные вероятности.

а) АВ - двойное попадание,

б) - двойной промах,

.

в) А+В - хотя бы одно попадание,

.

г) - одно попадание,

.

Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8. Найти вероятности того, что формула содержится 1) только в одном справочнике; 2) только в двух справочниках; 3) во всех трех справочниках.

Решение.

А - формула содержится в первом справочнике;

В - формула содержится во втором справочнике;

С - формула содержится в третьем справочнике.

Воспользуемся теоремами сложения и умножения вероятностей.

1.

2. .

3.

Пусть в результате испытания могут появиться n событий, независимых в совокупности, либо некоторые из них (в частности, только одно или ни одного), причем вероятности появления каждого из событий известны. Как найти вероятность того, что наступит хотя бы одно из этих событий? Например, если в результате испытания могут появиться три события, то появление хотя бы одного из этих событий означает наступление либо одного, либо двух, либо трех событий. Ответ на поставленный вопрос дает следующая теорема.

Теорема. Вероятность появления хотя бы одного из событий , независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий

Если события имеют одинаковую вероятность , то формула принимает простой вид:

.

Пример. Вероятности попадания в цель при стрельбе из трех орудий таковы: p1 = 0,8;p2 = 0,7; p3 = 0,9. Найти вероятность хотя бы одного попадания (событие А) при одном залпе из всех орудий.

Решение. Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события (попадание первого орудия), (попадание второго орудия) и (попадание третьего орудия) независимы в совокупности.

Вероятности событий, противоположных событиям , и (т. е. вероятности промахов), соответственно равны:

, ,

Искомая вероятность

.

Пример. В типографии имеется 4 плоскопечатных машины. Для каждой машины вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работает хотя бы одна машина (событие А).

Решение. События "машина работает" и "машина не работает" (в данный момент) -- противоположные, поэтому сумма их вероятностей равна единице:

Отсюда вероятность того, что машина в данный момент не работает, равна

Искомая вероятность

Так как полученная вероятность весьма близка к единице, то на основании следствия из принципа практической невозможности маловероятных событий мы вправе заключить, что в данный момент работает хотя бы одна из машин.

Пример. Вероятность того, что при одном выстреле стрелок попадает в цель, равна 0,4. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью не менее 0,9 он попал в цель хотя бы один раз?

Решение. Обозначим через А событие "при n выстрелах стрелок попадает в цель хотя бы один раз". События, состоящие в попадании в цель при первом, втором выстрелах и т. д., независимы в совокупности, поэтому применима формула .

Приняв во внимание, что, по условию, (следовательно, ), получим

Прологарифмируем это неравенство по основанию 10:

Итак, , т.е. стрелок должен произвести не менее 5 выстрелов.

1.5 Условная вероятность

Случайное событие определено как событие, которое при осуществлении совокупности условий эксперимента может произойти или не произойти. Если при вычислении вероятности события никаких других ограничений, кроме условий эксперимента, не налагается, то такую вероятность называют безусловной; если же налагаются и другие дополнительные условия, то вероятность события называют условной. Например, часто вычисляют вероятность события В при дополнительном условии, что произошло событие А.

Условной вероятностью (два обозначения) называют вероятность события В, вычисленную в предположении, что событие А уже наступило.

Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т.е.

.

В частности, отсюда получаем

.

Пример. В урне находятся 3 белых шара и 2 черных. Из урны вынимается один шар, а затем второй. Событие В - появление белого шара при первом вынимании. Событие А - появление белого шара при втором вынимании.

Решение. Очевидно, что вероятность события А, если событие В произошло, будет

.

Вероятность события А при условии, что событие В не произошло, будет

.

Пример. В урне 3 белых и 3 черных шара. Из урны дважды вынимают по одному шару, не возвращая их обратно. Найти вероятность появления белого шара при втором испытании (событие В), если при первом испытании был извлечен черный шар (событие А).

Решение. После первого испытания в урне осталось 5 шаров, из них 3 белых. Искомая условная вероятность

.

Этот же результат можно получить по формуле

.

Действительно, вероятность появления белого шара при первом испытании

.

Найдем вероятность того, что в первом испытании появится черный шар, а во втором -- белый. Общее число исходов -- совместного появления двух шаров, безразлично какого цвета, равно числу размещений . Из этого числа исходов событию благоприятствуют исходов. Следовательно,

.

Искомая условная вероятность

Результаты совпали.

Пример. В трамвайном парке имеются 15 трамваев маршрута №1 и 10 трамваев маршрута №2. Какова вероятность того, что вторым по счету на линию выйдет трамвай маршрута №1?

Решение. Пусть А - событие, состоящее в том, что на линию вышел трамвай маршрута №1, В - маршрута №2.

Рассмотрим все события, которые могут при этом быть (в условиях нашей задачи): . Из них нас будут интересовать только первое и третье, когда вторым выйдет трамвай маршрута №1.

Так как все эти события совместны, то:

;

;

отсюда искомая вероятность

Пример. Какова вероятность того, что 2 карты, вынутые из колоды в 36 карт, окажутся одной масти?

Решение. Сначала подсчитаем вероятность того, что две карты окажутся одной определенной масти (например «пики»). Пусть А - появление первой карты такой масти, В- появление второй карты той же масти. Событие В зависит от события А, т.к. его вероятность меняется от того, произошло или нет событие А. Поэтому придется воспользоваться теоремой умножения в ее общей форме:

,

где (после вынимания первой карты осталось 35 карт, из них той же масти, что и первая - 8).

Получаем

.

События, состоящие в том, что будут вынуты две карты масти «пики», масти «треф» и т.д., несовместны друг с другом. Следовательно, для нахождения вероятности их объединения воспользуемся теоремой сложения:

.

1.6 Формула полной вероятности и формула Байеса

Если событие А может произойти только при выполнении одного из событий , которые образуют полную группу несовместных событий, то вероятность события Авычисляется по формуле

.

Эта формула называется формулой полной вероятности.

Вновь рассмотрим полную группу несовместных событий , вероятности появления которых . Событие А может произойти только вместе с каким-либо из событий , которые будем называть гипотезами. Тогда по формуле полной вероятности

Если событие А произошло, то это может изменить вероятности гипотез .

По теореме умножения вероятностей

,

Откуда

.

Аналогично, для остальных гипотез

Полученная формула называется формулой Байеса (формулой Бейеса). Вероятности гипотез называются апостериорными вероятностями, тогда как -априорными вероятностями.

Пример. В магаз поступила новая продукция с 3х предприятий.20%-продукция первого предприятия, 30% - продукция второго предприятия, 50% - продукция третьего предприятия; далее, 10% продукции первого предприятия высшего сорта, на втором предприятии - 5% и на третьем - 20% продукции высшего сорта. Найти вероятность того, что случайно купленная новая продукция окажется высшего сорта.

Решение. Обозначим через В событие, заключающееся в том, что будет куплена продукция высшего сорта, через обозначим события, заключающиеся в покупке продукции, принадлежащей соответственно первому, второму и третьему предприятиям.

Можно применить формулу полной вероятности, причем в наших обозначениях:

Подставляя эти значения в формулу полной вероятности, получим искомую вероятность:

Пример. Один из трех стрелков вызывается на линию огня и производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго - 0,5; для третьего - 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.

Решение. Возможны три гипотезы:

А1 - на линию огня вызван первый стрелок,

А2 - на линию огня вызван второй стрелок,

А1 - на линию огня вызван третий стрелок.

Так как вызов на линию огня любого стрелка равновозможен, то

В результате опыта наблюдалось событие В - после произведенных выстрелов мишень не поражена. Условные вероятности этого события при сделанных гипотезах равны:

по формуле Байеса находим вероятность гипотезы после опыта:

Пример. На трех станках-автоматах обрабатываются однотипные детали, поступающие после обработки на общий конвейер. Первый станок дает 2% брака, второй - 7%, третий - 10%. Производительность первого станка в 3 раза больше производительности второго, а третьего - в 2 раза меньше, чем второго.

а) Каков процент брака на конвейере?

б) Каковы доли деталей каждого станка среди бракованных деталей на конвейере?

Решение. Возьмем с конвейера наудачу одну деталь и рассмотрим событие А - деталь бракованная. Оно связано с гипотезами относительно того, где была обработана эта деталь: - взятая наудачу деталь обработана на -ом станке, .

Условные вероятности (в условии задачи они даны в форме процентов):

Зависимости между производительностями станков означают следующее:

.

А так как гипотезы образуют полную группу, то

.

Решив полученную систему уравнений, найдем:

.

а) Полная вероятность того, что взятая наудачу с конвейера деталь - бракованная:

.

Другими словами, в массе деталей, сходящих с конвейера, брак составляет 4%.

б) Пусть известно, что взятая наудачу деталь - бракованная. Пользуясь формулой Байеса, найдем условные вероятности гипотез:

,

,

.

комбинаторика вероятность байес бернулли

Таким образом, в общей массе бракованных деталей на конвейере доля первого станка составляет 33%, второго - 39%, третьего - 28%.

1.7 Независимые испытания. Формула Бернулли

При решении вероятностных задач часто приходится сталкиваться с ситуациями, в которых одно и тоже испытание повторяется многократно и исход каждого испытания независим от исходов других. Такой эксперимент еще называется схемой повторных независимых испытаний или схемой Бернулли.

Примеры повторных испытаний:

1) многократное извлечение из урны одного шара при условии, что вынутый шар после регистрации его цвета кладется обратно в урну;

2) повторение одним стрелком выстрелов по одной и той же мишени при условии, что вероятность удачного попадания при каждом выстреле принимается одинаковой (роль пристрелки не учитывается).

Итак, пусть в результате испытания возможны два исхода: либо появится событие А, либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы; вероятность появления события А в каждом отдельно взятом или единичном испытании постоянна и от испытания к испытанию не изменяется (т.е. испытания проводятся в одинаковых условиях). Обозначим вероятность появления события А в единичном испытании буквой р, т.е. , а вероятность противоположного события (событие А не наступило) - буквой

.

Тогда вероятность того, что событие А появится в этих n испытаниях ровно k раз, выражаетсяформулой Бернулли

Распределение числа успехов (появлений события) носит название биномиального распределения.

Пример. В урне 20 белых и 10 черных шаров. Вынули 4 шара, причем каждый вынутый шар возвращают в урну перед извлечением следующего и шары в урне перемешивают. Найти вероятность того, что из четырех вынутых шаров окажется 2 белых.

Решение. Событие А - достали белый шар. Тогда вероятности

, .

По формуле Бернулли требуемая вероятность равна

.

Пример. Определить вероятность того, что в семье, имеющей 5 деталей, будет не больше трех девочек. Вероятности рождения мальчика и девочки предполагаются одинаковыми.

Решение. Вероятность рождения девочки

, тогда .

Найдем вероятности того, что в семье нет девочек, родилась одна, две или три девочки:

, ,

, .

Следовательно, искомая вероятность

.

Пример. Среди деталей, обрабатываемых рабочим, бывает в среднем 4% нестандартных. Найти вероятность того, что среди взятых на испытание 30 деталей две будут нестандартными.

Решение. Здесь опыт заключается в проверке каждой из 30 деталей на качество. Событие А - «появление нестандартной детали», его вероятность , тогда . Отсюда по формуле Бернулли находим

.

Пример. При каждом отдельном выстреле из орудия вероятность поражения цели равна 0,9. Найти вероятность того, что из 20 выстрелов число удачных будет не менее 16 и не более 19.

Решение. Вычисляем по формуле Бернулли:

Пример. Независимые испытания продолжаются до тех пор, пока событие А не произойдет k раз. Найти вероятность того, что потребуется n испытаний (n і k), если в каждом из них .

Решение. Событие В - ровно n испытаний до k-го появления события А - есть произведение двух следующий событий:

D - в n-ом испытании А произошло;

С - в первых (n-1)-ом испытаниях А появилось (к-1) раз.

Теорема умножения и формула Бернулли дают требуемую вероятность:

Надо заметить, что использование биномиального закона зачастую связано с вычислительными трудностями. Поэтому с возрастанием значений n и m становится целесообразным применение приближенных формул (Пуассона, Муавра-Лапласа), которые будут рассмотрены в следующих разделах.

1.8 Наивероятнейшее число успехов

Биномиальное распределение (распределение по схеме Бернулли) позволяет, в частности, установить, какое число появлений события А наиболее вероятно. Формула для наиболее вероятного числа успехов (появлений события) имеет вид:

Так как , то эти границы отличаются на 1. Поэтому , являющееся целым числом, может принимать либо одно значение, когда целое число (), то есть когда (а отсюда и ) нецелое число, либо два значения, когда целое число.

Пример. При автоматической наводке орудия вероятность попадания по быстро движущейся цели равна 0,9. Найти наивероятнейшее число попаданий при 50 выстрелах.

Решение. Здесь

.

Поэтому имеем неравенства:

Следовательно, .

Пример. Данные длительной проверки качества выпускаемых стандартных деталей показали, что в среднем брак составляет 7,5%. Определить наиболее вероятное число вполне исправных деталей в партии из 39 штук.

Решение. Обозначая вероятность выпуска исправной детали через , будем иметь и (получение бракованной детали и получение исправной детали -- события противоположные). Так как здесь n=39, то искомое число можно найти из неравенств:

Отсюда наивероятнейшее число исправных деталей равно 36 или 37.

Неравенства для наивероятнейшего числа успехов позволяют решить и обратную задачу: по данному и известному значению р определить общее число n всех испытаний.

Пример. При каком числе выстрелов наивероятнейшее число попаданий равно 16, если вероятность попадания в отдельном выстреле составляет 0,7?

Решение. Здесь

.

Составляем неравенства

,

Откуда

и

Таким образом, число всех выстрелов здесь может быть 22 или 23.

1.9 Формула Пуассона

При большом числе испытаний n и малой вероятности р формулой Бернулли пользоваться неудобно, например, вычислить трудно. В этом случае для вычисления вероятности того, что в n испытаниях (n - велико) событие произойдет k раз, используют формулу Пуассона:

- среднее число появлений события в n испытаниях.

Эта формула дает удовлетворительное приближение для и . При больших рекомендуется применять формулы Лапласа (Муавра-Лапласа). Cобытия, для которых применима формула Пуассона, называют редкими, так как вероятность их осуществления очень мала (обычно порядка 0,001-0,0001).

Пример. Устройство состоит из 1000 элементов, работающих независимо один от другого. Вероятность отказа любого элемента в течении времени Т равна 0,002. Найти вероятность того, что за время Т откажут ровно три элемента.

Решение. По условию дано:

.

Искомая вероятность

Пример. Завод отправил на базу 500 изделий. Вероятность повреждения изделия в пути 0,004. Найти вероятность того, что в пути повреждено меньше трех изделий.

Решение. По условию дано:

.

По теореме сложения вероятностей

Пример. Магазин получил 1000 бутылок минеральной воды. Вероятность того, что при перевозке бутылка окажется разбитой, равна 0,003. Найти вероятность того, что магазин получит более двух разбитых бутылок.

Решение. По условию дано:

.

Получаем:

1.10 Теоремы Муавра-Лапласа

Пусть в каждом из независимых испытаний событие A может произойти с вероятностью , (условия схемы Бернулли). Обозначим как и раньше, через вероятность ровно появлений события А в испытаниях. кроме того, пусть - вероятность того, что число появлений события А находится между и .

Локальная теорема Лапласа.

Если n - велико, а р - отлично от 0 и 1, то

где

- функция Гаусса (функция табулирована, таблицу можно скачать на странице формул по теории вероятностей).

Интегральная теорема Лапласа.

Если n - велико, а р - отлично от 0 и 1, то P(n; k1, k2)

где - функция Лапласа (функция табулирована, таблицу можно скачать на странице формул по теории вероятностей).

Функции Гаусса и Лапласа обладают свойствами, которые необходимо знать при использовании таблиц значений этих функций:

а)

б) при больших верно .

Теоремы Лапласа дают удовлетворительное приближение при . Причем чем ближе значения к 0,5, тем точнее данные формулы. При маленьких или больших значениях вероятности (близких к 0 или 1) формула дает большую погрешность (по сравнению с исходной формулой Бернулли).

Пример. Для мастера определенной квалификации вероятность изготовить деталь отличного качества равна 0,75. За смену он изготовил 400 деталей. Найти вероятность того, что в их числе 280 деталей отличного качества.

Решение. По условию

, откуда

По таблицам найдем

.

Искомая вероятность равна:

Пример. В продукции некоторого производства брак составляет 15%. Изделия отправляются потребителям (без проверки) в коробках по 100 штук. Найти вероятности событий:

В - наудачу взятая коробка содержит 13 бракованных изделий;

С - число бракованных изделий в коробке не превосходит 20

Решение. Изготовление детали - это испытание, в котором может появиться событие А - изделие бракованное - с вероятностью . Находим . Можно применять формулы Лапласа:

Приблизительно 9,5% всех коробок содержат 13 бракованных изделий и в 92% коробок число бракованных не превосходит 20.

Пример. Небольшой город ежедневно посещают 100 туристов, которые днем идут обедать. Каждый из них выбирает для обеда один из двух городских ресторанов с равными вероятностями и независимо друг от друга. Владелец одного из ресторанов желает, чтобы c вероятностью приблизительно 0,99 все пришедшие в его ресторан туристы могли там одновременно пообедать. Сколько мест должно для этого быть в его ресторане?

Решение. Будем считать, что событие произошло, если турист пообедал у заинтересованного владельца. По условию задачи , . Нас интересует такое наименьшее число посетителей , что вероятность одновременного прихода не менее чем туристов из числа с вероятностью успеха приблизительно равна вероятности переполнения ресторана, т.е. .

Таким образом, нас интересует такое наименьшее число , что . Применим интегральную теорему Муавра-Лапласа.

В нашем случае: - неизвестно,

, , .

Тогда

Используя таблицы для функции , находим, , и, значит, . Следовательно, в ресторане должно быть 62 места.

Размещено на Allbest.ru

...

Подобные документы

  • Возникновение теории вероятности как науки. Классическое определение вероятности. Частость наступления события. Операции над событиями. Сложение и умножение вероятности. Схема повторных независимых испытаний (система Бернулли). Формула полной вероятности.

    реферат [175,1 K], добавлен 22.12.2013

  • Показатели безотказности как показатели надежности невосстанавливаемых объектов. Классическое и геометрическое определение вероятности. Частота случайного события и "статистическое определение" вероятности. Теоремы сложения и умножения вероятностей.

    курсовая работа [328,1 K], добавлен 18.11.2011

  • Дискретные случайные величины и их распределения. Формула полной вероятности и формула Байеса. Общие свойства математического ожидания. Дисперсия случайной величины. Функция распределения случайной величины. Классическое определение вероятностей.

    контрольная работа [33,8 K], добавлен 13.12.2010

  • Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.

    контрольная работа [55,2 K], добавлен 19.12.2013

  • Правила применения уравнения Бернулли для определения возможности наступления события. Использование формул Муавра-Лапласа и Пуассона при неограниченном возрастании числа испытаний. Примеры решения задач с помощью теоремы Бернулли о частоте вероятности.

    курсовая работа [265,6 K], добавлен 21.01.2011

  • Определение и оценка вероятности наступления заданного события. Методика решения задачи, с использованием теоремы сложения и умножения, формулы полной вероятности или Байеса. Применение схемы Бернулли при решении задач. Расчет квадратического отклонения.

    практическая работа [55,0 K], добавлен 23.08.2015

  • Опыт со случайным исходом. Статистическая устойчивость. Понятие вероятности. Алгебра событий. Принцип двойственности для событий. Условные вероятности. Формулы сложения и умножения вероятностей. Формула Байеса. Пространство элементарных событий.

    реферат [402,7 K], добавлен 03.12.2007

  • Применение классического определения вероятности в решении экономических задач. Определение вероятности попадания на сборку бракованных и небракованных деталей. Вычисление вероятности и выборочного значения статистики при помощи формулы Бернулли.

    контрольная работа [309,4 K], добавлен 18.09.2010

  • Классическое определение вероятности события. Способы вычисления наступления предполагаемого события. Построение многоугольника распределения. Поиск случайных величин с заданной плотностью распределения. Решение задач, связанных с темой вероятности.

    задача [104,1 K], добавлен 14.01.2011

  • Случайные события, их классификация. Свойство статистической устойчивости относительной частоты события. Предельные теоремы в схеме Бернулли. Аксиоматическое и геометрическое определение вероятности. Локальная и интегральная теоремы Муавра-Лапласа.

    реферат [1,4 M], добавлен 18.02.2014

  • Определение числа всех равновероятных исходов испытания. Правило умножения вероятностей независимых событий, их полная система. Формула полной вероятности события. Построение ряда распределения случайной величины, ее математическое ожидание и дисперсия.

    контрольная работа [106,1 K], добавлен 23.06.2009

  • Знакомство с основными понятиями и формулами комбинаторики как науки. Методы решения комбинаторных задач. Размещение и сочетание элементов, правила их перестановки. Характеристики теории вероятности, ее классическое определение, свойства и теоремы.

    презентация [1,3 M], добавлен 21.01.2014

  • Определение вероятности появления поломок. Расчет вероятности успеха, согласно последовательности испытаний по схеме Бернулли. Нахождение вероятности определенных событий по формуле гипергеометрической вероятности. Расчет дискретной случайной величины.

    контрольная работа [69,3 K], добавлен 17.09.2013

  • Элементы линейной алгебры. Дифференциальное и интегральное исчисление функции одной переменной. Биномиальный закон распределения. Комбинаторные формулы. Статистическое определение вероятности. Формула полной вероятности. Дискретные случайные величины.

    творческая работа [686,3 K], добавлен 30.04.2009

  • Определение вероятности появления события в каждом из независимых испытаний. Случайные величины, заданные функцией распределения (интегральной функцией), нахождение дифференциальной функции (плотности вероятности), математического ожидания и дисперсии.

    контрольная работа [59,7 K], добавлен 26.07.2010

  • Статистическое, аксиоматическое и классическое определение вероятности. Дискретные случайные величины. Предельные теоремы Лапласа и Пуассона. Функция распределения вероятностей для многомерных случайных величин. Формула Байеса. Точечная оценка дисперсии.

    шпаргалка [328,7 K], добавлен 04.05.2015

  • Закон распределения случайной величины дискретного типа (принимающей отдельные числовые значения). Предельные теоремы схемы Бернулли. Вычисление вероятности появления события по локальной теореме Муавра-Лапласа. Интегральная формула данной теоремы.

    презентация [611,2 K], добавлен 17.08.2015

  • Определение вероятности наступления события по формуле Бернулли. Построение эмпирической функции распределения и гистограммы для случайной величины. Вычисление коэффициента корреляции, получение уравнения регрессии. Пример решения задачи симплекс-методом.

    контрольная работа [547,6 K], добавлен 02.02.2012

  • Изучение закономерностей массовых случайных явлений. Степень взаимосвязи теории вероятностей и статистики. Невозможные, возможные и достоверные события. Статистическое, классическое, геометрическое, аксиоматическое определение вероятности. Формула Бейеса.

    реферат [114,7 K], добавлен 08.05.2011

  • Определение вероятности наступления события, используя формулу Бернулли. Вычисление математического ожидания и дисперсии величины. Расчет и построение графика функции распределения. Построение графика случайной величины, определение плотности вероятности.

    контрольная работа [390,7 K], добавлен 29.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.