Точечные оценки законов распределения

Расчет нахождения точечных оценок распределения на основании выборок — ряда значений хi, принимаемых случайной величиной х в n независимых опытах. Оценка среднего квадратического отклонения случайной величины х как корня квадратного из дисперсии.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 20.02.2014
Размер файла 38,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Точечные оценки законов распределения

Функции распределения описывают поведение непрерывных случайных величин, т.е. величин, возможные значения которых неотделимы друг от друга и непрерывно заполняют некоторый конечный или бесконечный интервал. На практике все результаты измерений и случайные погрешности являются величинами дискретными, т.е. величинами хi, возможные значения которых отделимы друг от друга и поддаются счету. При использовании дискретных случайных величин возникает задача нахождения точечных оценок параметров их функций распределения на основании выборок -- ряда значений хi, принимаемых случайной величиной х в n независимых опытах. Используемая выборка должна быть репрезентативной (представительной), т.е. должна достаточно хорошо представлять пропорции генеральной совокупности Х.

Оценка параметра называется точечной, если она выражается одним числом.

Задача нахождения точечных оценок -- частный случай статистической задачи нахождения оценок параметров функции распределения случайной величины на основании выборки. В отличие от самих параметров их точечные оценки являются случайными величинами, причем их значения зависят от объема экспериментальных данных, а закон распределения -- от законов распределения самих случайных величин.

Точечные оценки могут быть состоятельными, несмещенными и эффективными. точечный случайная величина дисперсия

Состоятельной называется оценка, которая при увеличении объема выборки стремится по вероятности к истинному значению числовой характеристики.

Несмещенной называется оценка, математическое ожидание которой равно оцениваемой числовой характеристике. Наиболее эффективной считают ту из нескольких возможных несмещенных оценок, которая имеет наименьшую дисперсию. Требование несмещенности на практике не всегда целесообразно, так как оценка с небольшим смещением и малой дисперсией может оказаться предпочтительнее несмещенной оценки с большой дисперсией. На практике не всегда удается удовлетворить одновременно все три этих требования, однако выбору оценки должен предшествовать ее критический анализ со всех перечисленных точек зрения.

Наиболее распространенным методом получения оценок является метод наибольшего правдоподобия, который приводит к асимптотически несмещенным и эффективным оценкам с приближенно нормальным распределением. Среди других методов можно назвать методы моментов и наименьших квадратов.

Точечной оценкой математического ожидания (МО) результата измерений является среднее арифметическое значение измеряемой величины

При любом законе распределения МО является состоятельной и несмещенной оценкой, а также наиболее эффективной по критерию наименьших квадратов.

Точечная оценка дисперсии является несмещенной и состоятельной, определяется по формуле

Более удобна для практики другая оценка распределения случайной величины Х, это - среднее квадратическое отклонение (СКО).

Оценка среднего квадратического отклонения (СКО) случайной величины х определяется как корень квадратный из дисперсии.

Соответственно его оценка может быть найдена путем извлечения корня из оценки дисперсии. Однако эта операция является нелинейной процедурой, приводящей к смещенности получаемой оценки. Для исправления оценки СКО вводят поправочный множитель k(n), зависящий от числа наблюдений n. Он изменяется от k(3) = 1,13 до k(?) ?1,03.

Оценка среднего квадратического отклонения

Полученные оценки МО и СКО являются случайными величинами. Это проявляется в том, что при повторениях серий из n наблюдений каждый раз будут получаться различные оценки Рассеяние этих оценок целесообразно оценивать с помощью СКО .

Ввиду того, что большое число измерений проводится относительно редко, погрешность определения у может быть весьма существенной. В любом случае она больше погрешности из-за смещенности оценки, обусловленной извлечением квадратного корня и устраняемой поправочным множителем k(n). В связи с этим на практике пренебрегают учетом смещенности оценки СКО отдельных наблюдений и определяют его по формуле

т.е. считают k(n) = 1.

Иногда оказывается удобнее использовать следующие формулы для расчета оценок СКО отдельных наблюдений и результата измерения:

Точечные оценки других параметров распределений используются значительно реже.

дисперсия выборка квадратический корень

2. Доверительная вероятность и доверительный интервал

Рассмотренные точечные оценки параметров распределения дают оценку в виде числа, наиболее близкого к значению неизвестного параметра. Такие оценки используют только при большом числе измерений. Чем меньше объем выборки, тем легче допустить ошибку при выборе параметра.

Для практики важно не только получить точечную оценку, но и определить интервал, называемый доверительным, между границами которого с заданной доверительной вероятностью находится истинное значение оцениваемого параметра

P {xн < x < xв} = (1-q)

где q -- уровень значимости; хн, хв -- нижняя и верхняя границы интервала разброса Х.

В общем случае доверительные интервалы можно строить на основе неравенства Чебышева. При любом законе распределения случайной величины, обладающей моментами первых двух порядков, верхняя граница вероятности попадания отклонения случайной величины х от центра распределения Хц интервал tSx описывается неравенством Чебышева

P {|x -Xц| ? tSx} ? (1 - 1/ t2)

где Sx -- оценка СКО распределения; t -- положительное число.

Для нахождения доверительного интервала не требуется знать закон распределения результатов наблюдений, но нужно знать оценку СКО.

Полученные с помощью неравенства Чебышева интервалы оказываются слишком широкими для практики. Так, доверительной вероятности 0,9 для многих законов распределений соответствует доверительный интервал 1,6Sx. Неравенство Чебышева дает в данном случае 3,16Sx. В связи с этим оно не получило широкого распространения.

В метрологической практике используют главным образом квантильные оценки доверительного интервала. Под 100*P-процентным квантилем (хр) понимают абсциссу такой вертикальной линии, слева от которой площадь под кривой плотности распределения равна Р%. Иначе говоря, квантиль -- это значение случайной величины (погрешности) с заданной доверительной вероятностью Р. Например, медиана распределения является 50%-ным квантилем - х05.

На практике 25- и 75%-ный квантили принято называть сгибами, или квантилями распределения. Между ними заключено 50% всех возможных значений случайной величины, а остальные 50% лежат вне их.

Интервал значений случайной величины х между x0.05 и x0.95 охватывает 90% всех ее возможных значений и называется интерквантильным промежутком с 90%-ной вероятностью. Его протяженность равна

d0.9 = x0.95 - x0.05

На основании такого подхода вводится понятие квантильных значений погрешности, т.е. значений погрешности с заданной доверительной вероятностью Р -- границ интервала неопределенности

±?Д = ±(хр1-р}/2 = ±dр/2

На его протяженности встречается Р% значений случайной величины (погрешности), а q = (1-P)% общего их числа остаются за пределами этого интервала.

1) Для получения интервальной оценки нормально распределенной случайной величины необходимо:

* определить точечную оценку МО () и СКО (Sx) случайной величины по формулам (8) и (11) соответственно;

* выбрать доверительную вероятность Р из рекомендуемого ряда значений 0,90; 0,95; 0,99;

F(xн) = q/2 = (1 - P)/2; F(xв) = (1 - q/2) = P + q /2

* найти верхнюю хв и нижнюю хн границы.

Значения хн и хв определяются из таблиц значений интегральной функции распределения А(t) или функции Лапласа Ф(t).

Полученный доверительный интервал удовлетворяет условию

где n -- число измеренных значений;

zp -- аргумент функции Лапласа Ф(t), отвечающей вероятности Р/2.

В данном случае zp называется - квантильным множителем.

Половина длины доверительного интервала Dр = zpSx/n1/2 называется доверительной границей погрешности результата измерений.

Пример 1.

Произведено 50 измерений постоянного сопротивления. Определить доверительный интервал для МО значения постоянного сопротивления, если закон распределения нормальный с параметрами

mx = = 590 Ом,

Sx = 90 Ом при доверительной вероятности Р = 0,9.

Так как гипотеза о нормальности закона распределения не противоречит опытным данным, доверительный интервал определяется по формуле

Ф(zр) = Р/2 = 0,45.

zp= 1,65.

Следовательно, доверительный интервал запишется в виде

(590 - 1,65 *90/501/2) < R < (590 + 1,65 * 90 / 501/2) или (590-21) < R < (590+21). Окончательно 569 Ом < R < 611 Ом.

При отличии закона распределения случайной величины от нормального необходимо построить его математическую модель и определять доверительный интервал с ее использованием.

Рассмотренный способ нахождения доверительных интервалов справедлив для достаточно большого числа наблюдений n, когда у = Sx. Следует помнить, что вычисляемая оценка СКО Sx является лишь некоторым приближением к истинному значению у.

Определение доверительного интервала при заданной вероятности оказывается тем менее надежным, чем меньше число наблюдений.

Нельзя пользоваться формулами нормального распределения при малом числе наблюдений, если нет возможности теоретически на основе предварительных опытов с достаточно большим числом наблюдений определить СКО. .

2) Расчет доверительных интервалов для случая, когда распределение результатов наблюдений нормально, но их дисперсия неизвестна, т.е. при малом числе наблюдений n, возможно выполнить с использованием распределения Стьюдента S(t,k). Оно описывает плотность распределения отношения (дроби Стьюдента):

где Q -- истинное значение измеряемой величины. Величины , и вычисляются на основании опытных данных и представляют собой точечные оценки: МО, СКО среднего арифметического значения и СКО результатов измерений.

= / n1/2

Вероятность того, что дробь Стьюдента в результате выполненных наблюдений примет некоторое значение в интервале (-tp; +tр).

tp - называется коэффициентом Стьюдента.

где k -- число степеней свободы, равное (n - 1). Величины tp (называемые в данном случае коэффициентами Стьюдента), рассчитанные с помощью двух последних формул для различных значений доверительной вероятности и числа измерений, табулированы. Следовательно, с помощью распределения Стьюдента можно найти вероятность того, что отклонение среднего арифметического от истинного значения измеряемой величины не превышает .

В тех случаях, когда распределение случайных погрешностей не является нормальным, все же часто пользуются распределением Стьюдента с приближением, степень которого остается неизвестной. Распределение Стьюдента применяют при числе измерений n < 30, поскольку уже при n = 20, ..., 30 оно переходит в нормальное и вместо уравнения можно использовать уравнение.

Результат измерения записывается в виде

где Рд -- конкретное значение доверительной вероятности.

Множитель t при большом числе измерений (n) равен квантильному множителю zр. При малом n он равен коэффициенту Стьюдента.

Полученный результат измерения не является одним конкретным числом, а представляет собой интервал, внутри которого с некоторой вероятностью Рд находится истинное значение измеряемой величины. Выделение середины интервала вовсе не предполагает, что истинное значение ближе к нему, чем к остальным точкам интервала. Оно может быть в любом месте интервала, а с вероятностью 1-Рд даже вне его.

Пример 2

Определение удельных магнитных потерь для различных образцов одной партии электротехнической стали марки 2212 дало следующие результаты: 1.21; 1.17; 1,18; 1,13; 1,19; 1,14; 1,20 и 1,18 Вт/кг.

Считая, что систематическая погрешность отсутствует, а случайная распределена по нормальному закону, требуется определить доверительный интервал при значениях доверительной вероятности 0,9 и 0,95. Для решения задачи использовать формулу Лапласа в распределении Стьюдента.

1) По формулам находим оценки среднего арифметического значения и СКО результатов измерений.

Они соответственно равны = 1,18 и Sx = 0,0278 Вт/кг.

Считая, что оценка СКО равна самому отклонению, находим:

Отсюда, используя значения функции Лапласа, приведенные в таблице приложения 1, определяем, что zр = 1,65 (для Р = 0,9).

Для Р = 0,95 коэффициент 2-й zp = 1,96.

Доверительные интервалы, соответствующие Р = 0,9 и 0,95, равны 1,18±0,016 Вт/кг и 1,18±0,019 Вт/кг.

2) В том случае, когда нет оснований считать, что СКО и его оценка равны, доверительный интервал определяется на основе распределения Стьюдента:

По таблице в приложении 2 находим, что t0.9 = 1,9 и t0.95 = 2,37.

Отсюда доверительные интервалы соответственно равны 1,18±0,019 Вт/кг и

1,18±0,023 Вт/кг.

Литература

1. «Метрология», Сергеев А.Г., Крохин В.В., «Логос», Москва, 1999

2. «Оценка погрешностей результатов измерений», Новицкий П.В., Зограф И.А., «Энергоатомиздат», М, 1985.

Размещено на Allbest.ru

...

Подобные документы

  • Расчет параметров экспериментального распределения. Вычисление среднего арифметического значения и среднего квадратического отклонения. Определение вида закона распределения случайной величины. Оценка различий эмпирического и теоретического распределений.

    курсовая работа [147,0 K], добавлен 10.04.2011

  • Определение вероятности для двух несовместных и достоверного событий. Закон распределения случайной величины; построение графика функции распределения. Нахождение математического ожидания, дисперсии, среднего квадратичного отклонения случайной величины.

    контрольная работа [97,1 K], добавлен 26.02.2012

  • Алгоритм определения вероятности события и выполнения статистических ожиданий. Оценка возможных значений случайной величины и их вероятности. Расчет математического ожидания, дисперсии и среднего квадратического отклонения. Анализ характеристик признака.

    контрольная работа [263,8 K], добавлен 13.01.2014

  • Вычисление математического ожидания, дисперсии, функции распределения и среднеквадратического отклонения случайной величины. Закон распределения случайной величины. Классическое определение вероятности события. Нахождение плотности распределения.

    контрольная работа [38,5 K], добавлен 25.03.2015

  • Определение вероятности того, что из урны взят белый шар. Нахождение математического ожидания, среднего квадратического отклонения и дисперсии случайной величины Х, построение гистограммы распределения. Определение параметров распределения Релея.

    контрольная работа [91,7 K], добавлен 15.11.2011

  • Решение задач по определению вероятности событий, ряда и функции распределения с помощью формулы умножения вероятностей. Нахождение константы, математического описания и дисперсии непрерывной случайной величины из функции распределения случайной величины.

    контрольная работа [57,3 K], добавлен 07.09.2010

  • Генеральная совокупность подлежащих изучению объектов или возможных результатов наблюдений, производимых в одинаковых условиях над одним объектом. Описание наблюдаемых значений случайной величины Х. Характеристика статистической функции распределения.

    курсовая работа [216,5 K], добавлен 03.05.2011

  • Методы составления закона распределения случайной величины. Вычисление средней арифметической и дисперсии распределения. Расчет средней квадратической ошибки бесповторной выборки. Построение эмпирических линий регрессии, поиск уравнения прямых регрессий.

    контрольная работа [77,6 K], добавлен 20.07.2010

  • Использование формулы Бернулли для нахождения вероятности происхождения события. Построение графика дискретной случайной величины. Математическое ожидание и свойства интегральной функции распределения. Функция распределения непрерывной случайной величины.

    контрольная работа [87,2 K], добавлен 29.01.2014

  • Понятия теории вероятностей и математической статистики, применение их на практике. Определение случайной величины. Виды и примеры случайных величин. Закон распределения дискретной случайной величины. Законы распределения непрерывной случайной величины.

    реферат [174,7 K], добавлен 25.10.2015

  • Вероятность попадания случайной величины Х в заданный интервал. Построение графика функции распределения случайной величины. Определение вероятности того, что наудачу взятое изделие отвечает стандарту. Закон распределения дискретной случайной величины.

    контрольная работа [104,7 K], добавлен 24.01.2013

  • Вычисление вероятностей возможных значений случайной величины по формуле Бернулли. Расчет математического ожидания, дисперсии, среднеквадратического отклонения, медианы и моды. Нахождение интегральной функции, построение многоугольника распределения.

    контрольная работа [162,6 K], добавлен 28.05.2012

  • Задачи математической статистики. Распределение случайной величины на основе опытных данных. Эмпирическая функция распределения. Статистические оценки параметров распределения. Нормальный закон распределения случайной величины, проверка гипотезы.

    курсовая работа [57,0 K], добавлен 13.10.2009

  • Определение вероятностей различных событий по формуле Бернулли. Составление закона распределения дискретной случайной величины, вычисление математического ожидания, дисперсии и среднеквадратического отклонения случайной величины, плотностей вероятности.

    контрольная работа [344,8 K], добавлен 31.10.2013

  • Особенности выполнения теоремы Бернулли на примере электрической схемы. Моделирование случайной величины по закону распределения Пуассона, заполнение массива. Теория вероятности, понятие ожидания, дисперсии случайной величины и закон распределения.

    курсовая работа [29,7 K], добавлен 31.05.2010

  • Особенности функции распределения как самой универсальной характеристики случайной величины. Описание ее свойств, их представление с помощью геометрической интерпретации. Закономерности вычисления вероятности распределения дискретной случайной величины.

    презентация [69,1 K], добавлен 01.11.2013

  • Плотность распределения непрерывной случайной величины. Характеристика особенностей равномерного и нормального распределения. Вероятность попадания случайной величины в интервал. Свойства функции распределения. Общее понятие о регрессионном анализе.

    контрольная работа [318,9 K], добавлен 26.04.2013

  • Функция распределения непрерывной случайной величины. Математическое ожидание непрерывной случайной величины, плотность распределения вероятностей системы. Ковариация. Коэффициент корреляции.

    лабораторная работа [52,3 K], добавлен 19.08.2002

  • Построение доверительных интервалов для математического ожидания и дисперсии, соответствующие вероятности. Исследование статистических характеристик случайной величины на основе выбора объема. Теоретическая и эмпирическая плотность распределения.

    курсовая работа [594,4 K], добавлен 02.01.2012

  • Оценки неизвестных параметров закона распределения случайной величины Х по данным выборки. Интервальное оценивание. Случайный интервал. Граничные точки доверительного интервала. Нижний и верхний доверительные пределы.

    реферат [30,0 K], добавлен 31.03.2003

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.