Решение линейных алгебраических систем методом Гаусса

Рассмотрение решения линейных алгебраических систем с помощью метода Гаусса, постановки задачи, описания и сущности метода исключения, изучение точности метода, его преимуществ и недостатков, а также условий применимости и алгоритмов решения системы.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 27.02.2014
Размер файла 37,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

1.Решение линейных алгебраических систем методом Гаусса

1.1 Постановка задачи

1.2 Описание метода Гаусса

1.2.1 Сущность метода исключения Гаусса

1.2.2 Точность метода

1.2.3 Преимущества и недостатки метода Гаусса

1.2.4 Условие применимости метода

1.3 Алгоритм решения системы методом Гаусса

1.Решение линейных алгебраических систем методом Гаусса

линейный алгебраический алгоритм

1.1 Постановка задачи

Рассмотрим систему линейных алгебраических уравнений (СЛАУ)

, (1)

где матрица , искомый вектор,

заданный вектор.

Будем предполагать, что определитель матрицы отличен от нуля, т.е. решение системы (1) существует.

1.2 Описание метода Гаусса

Одним из самых распространенных методов решения систем линейных уравнений является метод Гаусса. Этот метод (который также называют методом последовательного исключения неизвестных) известен в различных вариантах уже более 2000 лет.

1.2.1 Сущность метода исключения Гаусса

Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Метод заключается в том, что при прямом ходе в алгоритме метода Гаусса на каждом шаге исключения производится выбор наибольшего по модулю элемента в качестве ведущего. Этого достигают перестановкой строк или столбцов матрицы коэффициентов. Наиболее распространённой в вычислительной практике является стратегия выбора главного элемента столбца - нахождение максимального по модулю элемента k-го столбца матрицы и использование его в качестве ведущего элемента на k-м шаге исключения. В этом случае для невырожденных систем гарантируется, что ведущие элементы не равны нулю, и уменьшается погрешность при делении и последующем вычитании при преобразованиях. Рекомендуется также масштабировать предварительно каждое уравнение исходной системы, разделив на его наибольший по абсолютной величине коэффициент. Это делает рост элементов промежуточных матриц ограниченным.

Помимо аналитического решения СЛАУ, метод Гаусса также применяется для:

a) нахождения матрицы, обратной к данной (к матрице справа приписывается единичная такого же размера, что и исходная: , после чего приводится к виду единичной матрицы методом Гаусса-Жордана; в результате на месте изначальной единичной матрицы справа оказывается обратная к исходной матрица: );

b) определения ранга матрицы (согласно следствию из теоремы Кронекера-Капелли ранг матрицы равен числу её главных переменных);

c) численного решения СЛАУ в вычислительной технике (ввиду погрешности вычислений используется Метод Гаусса с выделением главного элемента, суть которого заключена в том, чтобы на каждом шаге в качестве главной переменной выбирать ту, при которой среди оставшихся после вычёркивания очередных строк и столбцов стоит максимальный по модулю коэффициент).

Для контроля ошибки реализации метода используются так называемые контрольные суммы. Схема контроля основывается на следующем очевидном положении. Увеличение значения всех неизвестных на единицу равносильно замене данной системы контрольной системой, в которой свободные члены равны суммам всех коэффициентов соответствующей строки. Создадим дополнительный столбец, хранящий сумму элементов матрицы по строкам. На каждом шаге реализации прямого хода метода Гаусса будем выполнять преобразования и над элементами этого столбца, и сравнивать их значение с суммой по строке преобразованной матрицы. В случае не совпадения значений счет прерывается.

1.2.2 Точность метода

Корни, полученные методом Гаусса точны при следующих условиях:

Коэффициенты в задании даны точно

По ходу работы не выполнялись округления.

1.2.3 Преимущества и недостатки метода Гаусса

Итак, метод Гаусса применим к любой системе линейных уравнений, он идеально подходит для решения систем, содержащих больше трех линейных уравнений. Метод Гаусса решения СЛАУ с числовыми коэффициентами в силу простоты и однотипности выполняемых операций пригоден для счета на электронно-вычислительных машинах.

Достоинства метода:

a) менее трудоёмкий по сравнению с другими методами;

b) позволяет однозначно установить, совместна система или нет, и если совместна, найти её решение;

c) позволяет найти максимальное число линейно независимых уравнений - ранг матрицы системы.

Недостатки метода:

Один из основных недостатков метода Гаусса связан с тем, что при его реализации накапливается вычислительная погрешность. Для больших систем порядка m число действий умножений и делений близко к .

Для того, чтобы уменьшить рост вычислительной погрешности применяются различные модификации метода Гаусса. Например, метод Гаусса с выбором главного элемента по столбцам, в этом случае на каждом этапе прямого хода строки матрицы переставляются таким образом, чтобы диагональный угловой элемент был максимальным. При исключении соответствующего неизвестного из других строк деление будет производиться на наибольший из возможных коэффициентов и следовательно относительная погрешность будет наименьшей.

Так же существенным недостатком этого метода является невозможность сформулировать условия совместности и определенности системы в зависимости от значений коэффициентов и свободных членов. С другой стороны, даже в случае определенной системы этот метод не позволяет найти общие формулы, выражающие решение системы через ее коэффициенты и свободные члены, которые необходимо иметь при теоретических исследованиях.

1.2.4 Условие применимости метода

Необходимым и достаточным условием применимости метода является неравенство нулю всех «ведущих элементов» (на диагонали полученной матрицы не должно быть нулевых элементов).

1.3 Алгоритм решения системы методом Гаусса

Процесс решения по методу Гаусса состоит из двух этапов: прямой и обратный ходы.

Процесс приведения к системе с треугольной матрицей называется прямым ходом, а нахождения неизвестных - обратным. Если один из ведущих элементов равен нулю, изложенный алгоритм метода Гаусса неприменим. Тем не менее, для нормальной матрицы с ненулевым определителем всегда возможна такая перестановка уравнений, что на главной диагонали не будет нулей. В приведенном коде для простоты перестановок не делается, зато делается проверка решения, а прямой и обратный ход для наглядности вынесены в отдельные подпрограммы.

На первом этапе осуществляется так называемый прямой ход, когда путём элементарных преобразований над строками систему приводят к ступенчатой или треугольной форме, либо устанавливают, что система несовместна. А именно, среди элементов первого столбца матрицы выбирают ненулевой, перемещают его на крайнее верхнее положение перестановкой строк и вычитают получившуюся после перестановки первую строку из остальных строк, домножив её на величину, равную отношению первого элемента каждой из этих строк к первому элементу первой строки, обнуляя тем самым столбец под ним.

После того, как указанные преобразования были совершены, первую строку и первый столбец мысленно вычёркивают и продолжают пока не останется матрица нулевого размера. Если на какой-то из итераций среди элементов первого столбца не нашёлся ненулевой, то переходят к следующему столбцу и проделывают аналогичную операцию.

На первом этапе (прямой ход) система приводится к ступенчатому (в частности, треугольному) виду.

Если в процессе приведения системы к ступенчатому виду появятся нулевые уравнения, т.е. равенства вида 0=0, их отбрасывают. Если же появится уравнение вида то это свидетельствует о несовместности системы.

На этом прямой ход метода Гаусса заканчивается.

Алгоритм прямого прохода:

Выбрать максимальный элемент строки стоящий справа от текущего диагонального элемента, запомнить столбец, в котором он стоит;

Если максимальный элемент равен нулю, то СЛАУ не имеет решения, т.к. в системе присутствую линейно зависимые уравнения;

Поменять столбец найденный в пункте 1, со столбцом, в котором располагается текущий диагональный элемент;

Разделить все элементы строки на текущий диагональный элемент (он изменился, т.к. столбцы были переставлены);

Вычитаем текущую строку из ниже лежащих строк матрицы, умножая ее на коэффициент при соответствующем неизвестном.

Прямой проход завершен, результат - нижняя (находящаяся под главной диагональю) треугольная матрица заполнена нулями.

На втором этапе осуществляется так называемый обратный ход, суть которого заключается в том, чтобы выразить все получившиеся базисные переменные через небазисные и построить фундаментальную систему решений, либо, если все переменные являются базисными, то выразить в численном виде единственное решение системы линейных уравнений.

Эта процедура начинается с последнего уравнения, из которого выражают соответствующую базисную переменную (она в нем всего одна) и подставляют в предыдущие уравнения, и так далее, поднимаясь по «ступенькам» наверх.

Каждой строчке соответствует ровно одна базисная переменная, поэтому на каждом шаге, кроме последнего (самого верхнего), ситуация в точности повторяет случай последней строки.

Примечание: на практике удобнее работать не с системой, а с расширенной ее матрицей, выполняя все элементарные преобразования над ее строками. Удобно, чтобы коэффициент a11 был равен 1 (уравнения переставить местами, либо разделить обе части уравнения на a11).

Запишем систему Ax=f, в развернутом виде

Предположим, что . Последовательно умножая первое уравнение на и складывая с i-м уравнение, исключим из всех уравнений кроме первого. Получим систему

Аналогичным образом из полученной системы исключим . Последовательно, исключая все неизвестные, получим систему треугольного вида

Описанная процедура называется прямым ходом метода Гаусса. Заметим, что ее выполнение было возможно при условии, что все , не равны нулю.

Выполняя последовательные подстановки в последней системе, (начиная с последнего уравнения) можно получить все значения неизвестных.

.

Эта процедура получила название обратный ход метода Гаусса.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие и специфические черты системы линейных алгебраических уравнений. Механизм и этапы решения системы линейных алгебраических уравнений. Сущность метода исключения Гаусса, примеры решения СЛАУ данным методом. Преимущества и недостатки метода Гаусса.

    контрольная работа [397,2 K], добавлен 13.12.2010

  • Изучение основ линейных алгебраических уравнений. Нахождение решения систем данных уравнений методом Гаусса с выбором ведущего элемента в строке, в столбце и в матрице. Выведение исходной матрицы. Основные правила применения метода факторизации.

    лабораторная работа [489,3 K], добавлен 28.10.2014

  • Сущность итерационного метода решения задачи, оценка его главных преимуществ и недостатков. Разновидности итерационных методов решения систем линейных алгебраических уравнений: Якоби, Хорецкого и верхней релаксации, их отличия и возможности применения.

    курсовая работа [39,2 K], добавлен 01.12.2009

  • Рассмотрение систем линейных алгебраических уравнений общего вида. Сущность теорем и их доказательство. Особенность трапецеидальной матрицы. Решение однородных и неоднородных линейных алгебраических уравнений, их отличия и применение метода Гаусса.

    реферат [66,4 K], добавлен 14.08.2009

  • Характеристика способов решения систем линейных алгебраических уравнений (СЛАУ). Описание проведения вычислений на компьютере методом Гаусса, методом квадратного корня, LU–методом. Реализация метода вращений средствами системы программирования Delphi.

    курсовая работа [118,4 K], добавлен 04.05.2014

  • Методы решения систем линейных алгебраических уравнений (СЛАУ): Гаусса и Холецкого, их применение к конкретной задаче. Код программы решения перечисленных методов на языке программирования Borland C++ Builder 6. Понятие точного метода решения СЛАУ.

    реферат [58,5 K], добавлен 24.11.2009

  • Метод Зейделя как модификация метода простой итерации. Особенности решения систем линейных алгебраических уравнений. Анализ способов построения графика функций. Основное назначение формул Симпсона. Характеристика модифицированного метода Эйлера.

    контрольная работа [191,3 K], добавлен 30.01.2014

  • Основные правила решения системы заданных уравнений методом Гаусса с минимизацией невязки и методом простых итераций. Понятие исходной матрицы; нахождение определителя для матрицы коэффициентов. Пример составления блок-схемы метода минимизации невязок.

    лабораторная работа [264,1 K], добавлен 24.09.2014

  • Сущность и содержание метода Крамера как способа решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы. Содержание основных правил Крамера, сферы и особенности их практического применения в математике.

    презентация [987,7 K], добавлен 22.11.2014

  • Понятие матрицы. Метод Гаусса. Виды матриц. Метод Крамера решения линейных систем. Действия над матрицами: сложение, умножение. Решение систем линейных уравнений методом Гаусса. Элементарные пребразования систем. Математические перобразования.

    лекция [45,4 K], добавлен 02.06.2008

  • Задачи вычислительной линейной алгебры. Математическое моделирование разнообразных процессов. Решение систем линейных алгебраических уравнений большой размерности. Метод обратной матрицы и метод Гаусса. Критерии совместности и определенности системы.

    курсовая работа [220,0 K], добавлен 21.10.2011

  • Анализ метода простой итерации для решения систем линейных алгебраических уравнений и реализация его в виде двух программ, каждая из которых использует свой собственный способ перехода от системы одного вида к другому. Программные и технические средства.

    курсовая работа [497,8 K], добавлен 27.03.2011

  • Ознакомление с основами метода Гаусса при решении систем линейных уравнений. Определение понятия ранга матрицы. Исследование систем линейных уравнений; особенности однородных систем. Рассмотрение примера решения данной задачи в матрической форме.

    презентация [294,9 K], добавлен 14.11.2014

  • Параллельные методы решения систем линейных уравнений с ленточными матрицами. Метод "встречной прогонки". Реализация метода циклической редукции. Применение метода Гаусса к системам с пятидиагональной матрицей. Результаты численного эксперимента.

    курсовая работа [661,7 K], добавлен 21.10.2013

  • Исследование метода квадратных корней для симметричной матрицы как одного из методов решения систем линейных алгебраических уравнений. Анализ различных параметров матрицы и их влияния на точность решения: мерность, обусловленность и разряженность.

    курсовая работа [59,8 K], добавлен 27.03.2011

  • Сравнительный анализ численных методов решения систем линейных алгебраических уравнений. Вычисление определителей и обратных матриц. Реализация методов в виде машинных программ на языке высокого уровня и решение задач на ЭВМ. Модификации метода Гаусса.

    реферат [85,2 K], добавлен 04.03.2011

  • Решение системы линейных алгебраических уравнений большой размерности с разреженными матрицами методом простого итерационного процесса. Понятие нормы матрицы и вектора. Критерии прекращения итерационного процесса. Выбор эффективного итерационного метода.

    лабораторная работа [21,8 K], добавлен 06.07.2009

  • Характеристика и использование итерационных методов для решения систем алгебраических уравнений, способы формирования уравнений. Методы последовательных приближений, Гаусса-Зейделя, обращения и триангуляции матрицы, Халецкого, квадратного корня.

    реферат [60,6 K], добавлен 15.08.2009

  • Математические модели явлений или процессов. Сходимость метода простой итерации. Апостериорная оценка погрешности. Метод вращений линейных систем. Контроль точности и приближенного решения в рамках прямого метода. Метод релаксации и метод Гаусса.

    курсовая работа [96,7 K], добавлен 13.04.2011

  • Структура и элементы, принципы формирования и правила разрешения систем линейных алгебраических уравнений. История развития различных методов решения: матричного, Крамера, с помощью функции Find. Особенности применения возможностей программы Mathcad.

    контрольная работа [96,0 K], добавлен 09.03.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.