Математическое моделирование в медицине. Виды моделей
Моделирование как метод научного познания. Пpимеpы огpаничений области пpименения экспеpимента в медицине. Математическая модель инфекционного заболевания. Модели объекта проектирования: инвариантна, алгоритмическая, аналитическая и графическая.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 25.03.2014 |
Размер файла | 25,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ГБОУ ВПО "Ивановская государственная медицинская академия" Минздрава РФ
Кафедра медицинской информатики
Реферат
Математическое моделирование в медицине. Виды моделей
Выполнила
Студентка 2 курса 6 пед
Гусейнова Р.Г.
Иваново 2013
Введение
Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, медицину. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в. Однако методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.
1. Моделирование как метод научного познания
Термин "модель" широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. Рассмотрим только такие "модели", которые являются инструментами получения знаний. Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале. Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез. Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.
Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств. Процесс моделирования включает три элемента: 1) субъект (исследователь), 2) объект исследования, 3) модель, опосредствующую отношения познающего субъекта и познаваемого объекта. Пусть имеется или необходимо создать некоторый объект А. Мы конструируем (материально или мысленно) или находим в реальном мире другой объект В - модель объекта А. Этап построения модели предполагает наличие некоторых знаний об объекте-оригинале. Познавательные возможности модели обуславливаются тем, что модель отражает какие-либо существенные черты объекта-оригинала. Вопрос о необходимости и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом (тогда она перестает быть оригиналом), так и в случае чрезмерного во всех существенных отношениях отличия от оригинала.
Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько "специализированных" моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.
На втором этапе процесса моделирования модель выступает как самостоятельный объект исследования. Одной из форм такого исследования является проведение "модельных" экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о ее "поведении". Конечным результатом этого этапа является множество знаний о модели. На третьем этапе осуществляется перенос знаний с модели на оригинал - формирование множества знаний S об объекте. Этот процесс переноса знаний проводится по определенным правилам. Знания о модели должны быть скорректированы с учетом тех свойств объекта-оригинала, которые не нашли отражения или были изменены при построении модели. Мы можем с достаточным основанием переносить какой-либо результат с модели на оригинал, если этот результат необходимо связан с признаками сходства оригинала и модели. Если же определенный результат модельного исследования связан с отличием модели от оригинала, то этот результат переносить неправомерно.
Четвертый этап - практическая проверка получаемых с помощью моделей знаний и их использование для построения обобщающей теории объекта, его преобразования или управления им. Для понимания сущности моделирования важно не упускать из виду, что моделирование - не единственный источник знаний об объекте. Процесс моделирования "погружен" в более общий процесс познания. Это обстоятельство учитывается не только на этапе построения модели, но и на завершающей стадии, когда происходит объединение и обобщение результатов исследования, получаемых на основе многообразных средств познания.
Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.
2. Значение метода для медицины
Метод моделирования находит свое применение в медицине и сопутствующих ей науках. Метод моделирования в медицине является средством, позволяющим устанавливать все более глубокие и сложные взаимосвязи между теорией и опытом. В последнее столетие экспериментальной метод в медицине начал наталкиваться на опpеделенные гpаницы, и выяснилось, что целый pяд исследований невозможен без моделиpования. Если остановиться на некотоpых пpимеpах огpаничений области пpименения экспеpимента в медицине, то они будут в основном следующими:
а) вмешательство в биологические системы иногда имеет такой хаpактеp, что невозможно установить пpичины появившихся изменений (вследствие вмешательства или по дpугим пpичинам);
б) некотоpые теоpетически возможные экспеpименты неосуществимы вследствие низкого уpоня pазвития экспеpиментальной техники;
в) большую группу экспериментов, связанных с экспериментированием на человеке, следует отклонить по моpально-этическим сообpажениям.
Но моделиpование находит шиpокое пpименение в области медицины не только из-за того, что может заменить экспеpимент. Оно имеет большое самостоятельное значение, котоpое выpажается в целом pяде пpеимуществ:
1. с помощью метода моделиpования на одном комплексе данных можно pазpаботать целый pяд pазличных моделей, по-pазному интеpпpетиpовать исследуемое явление, и выбpать наиболее плодотвоpную из них для теоpетического истолкования.
2. в пpоцессе постpоения модели можно сделать pазличные дополнения к исследуемой гипотезе и получить ее упpощение.
3. в случае сложных математических моделей можно пpименять ЭВМ.
4. откpывается возможность пpоведения модельных экспеpиментов (модельные экспеpименты на подопытных животных) .
Все это ясно показывает, что моделиpование выполняет в медицине самостоятельные функции и становится все более необходимой ступенью в пpоцессе создания теоpии.
3. Простейшая математическая модель инфекционного заболевания
Во второй половине двадцатого столетия широкое развитие получила такая сопутствующая медицине наука как иммунология. Успехи, достигнутые в иммунологии, оказывают прямое влияние на методы лечения, на всю клиническую практику в медицине. Проблемы иммунологии тесно связаны с проблемами лечения (послеоперационное заживление ран, трансплантация органов, раковые заболевания, аллергии и иммунодефициты).
К настоящему времени клиницистами и иммунологами накоплен огромный материал наблюдений за течением различных инфекционных заболеваний и на основе анализа этого материала получены фундаментальные результаты ,касающиеся механизмов взаимодействия антигенов и антител на различном уровне детализации: от макроскопического до внутриклеточного генетического .Эти результаты позволили подойти к построению математических моделей иммунных процессов. В подготовке этого реферата были использованы материалы монографии Г.И.Марчука "Математические модели в иммунологии", в частности, простейшая математическая модель заболевания, которая будет рассматриваться далее. Простейшая математическая модель будет построена на основе соотношения баланса для каждого из компонентов участвующих в иммунном ответе. Именно ввиду такой концепции частные особенности функционирования иммунной системы не оказываются существенными для анализа динамики болезни, а на первый план выступают основные закономерности протекания защитной реакции организма. Поэтому при построении математической модели не будут различаться клеточные и гуморальные компоненты иммунитета, участвующие в борьбе с антигенами, проникшими в организм. Предположим лишь, что такими компонентами организм располагает. Они будут названы антителами, в независимости от того, имеем ли мы дело с клеточно-лимфоидной системой иммунитета или с гуморально-иммуноглобулиновой. В этой модели предполагается также, что организм располагает достаточными ресурсами макрофагов, утилизирующих продукты иммунной реакции, а также других неспецифических факторов, необходимых для нормального функционирования иммунной системы . В связи с этим мы ограничимся рассмотрением трех компонентов : антигена антитела и плазматической клетки , производящей антитела. В качестве антигенов здесь будут выступать патогенные бактерии, либо вирусы. Следует также отметить, что при заболевании большое значение имеет степень поражения органа, подверженного атаке антигенов, поскольку оно в конечном итоге приводит к снижению активности иммунной системы. Это, естественно, должно быть отражено в математических моделях.
Итак, будем считать, что основными действующими факторами инфекционного заболевания являются следующие величины.
1) Концентрация патогенных размножающихся антигенов V(t).
2) Концентрация антител F(t).
3) Концентрация плазматических клеток C(t).
4) Относительная характеристика пораженного органа m(t).
Переходим к построению уравнений модели. Первое уравнение будет описывать изменение числа антигенов в организме:
dV= bVdt-gFVdt. (1)
Первый член в левой части этого уравнение описывает прирост антигенов dV за интервал времени dt за счет размножения .Естественно, что он пропорционален V и некоторому числу b, которое будем называть коэфициентом размножения антигенов . Член gFVdt описывает число антигенов , нейтрализируемых антителами F за интервал времени dt .В самом деле, число таких вирусов, очевидно, будет пропорционально как количеству антител в организме, так и количеству антигенов; g-коэфициент, связанный с вероятностью нейтрализации антигена антителами при встрече с ним. Разделив соотношение (1) на dt получим:
dV/dt=(b-gF)V.
Второе уравнение будет описывать рост плазматических клеток.
dC=aF(t-t)V(t- t)V(t- t)dt-u(C-C*)dt. (2)
Первый член правой части-генерация плазмоклеток, t-время, в течение которого осуществляется формирование каскада плазматических клеток, a-коэфициент, учитывающий вероятность встречи антиген-антитело, возбуждение каскадной реакции и число образующихся новых клеток. Второй член во второй формуле описывает уменьшение числа плазматических клеток за счет старения, u-коэфициент, равный обратной величине их времени жизни. Разделив соотношение (2) на dt, приходим к уравнению :
dC/dt=a F(t-t)V(t- t)V(t- t)- u(C-C*).
Для получения третьего уравнения подсчитывают баланс числа антител, реагирующих с антигеном.Исходят из соотношения:
dF=pCdt-hgFVdt-ufFdt. (3)
pCdt-генерация антител плазматическими клетками за интервал времени dt, p-скорость производства антител одной плазматической клеткой, hgFVdt-описывает уменьшение числа антител в интервале времени dt за счет связи с антигенами . ufFdt-уменьшение популяции антител за счет старения,где uf-коэфициент, обратно пропорциональный времени распада антител. Разделив (3) на dt получим:
dF/dt=pC-(uf+ hgV)F.
Введем в рассмотрение уравнение для относительной характеристики поражения органа- мишени. М-характеристика здорового органа. М*-соответствующая характеристика здоровой части пораженного органа Вводим в рассмотрение величину m по формуле:
m=1-M*/M
Для непораженного органа ,m равна нулю, для полностью пораженного -единице. Для этой характеристики рассмотрим уравнение(четвертое уравнение):
dm/dt=sV-um
Первый член правой части характеризует степень поражения органа. sV-количество антигенов, где s-некоторая константа ,своя для каждого заболевания. Уменьшение этой характеристики происходит за счет восстановительной деятельности организма.
Совершенно ясно, что при сильном поражении жизненно важных органов производительность выработки антител падает. Это является роковым для организма и ведет к летальному исходу. В нашей модели фактор поражения жизненно важных органов можно учесть в уравнении (2), заменив коэффициент a на произведение ae(m). Типичная схема для этой функции представлена на рис.1:
На этом рисунке кривая в интервале 0<=m<=m* равна 1. Это значит, что работоспособность иммунологических органов в этом интервале не зависит от тяжести болезни. Но далее их производительность быстро падает. Таким образом, приходим к следующей системе нелинейных обыкновенных дифференциальных уравнений:
dV/dt=(b-gF)V,
dC/dt=a F(t-t)V(t- t)V(t- t)- u(C-C*),
dF/dt=pC-(uf+ hgV)F,
dm/dt=sV-um.
К системе уравнений присоединяют начальные данные при t=t0(V(t0),F(t0),C(t0),m(t0)).Полученную систему уравнений назовем простейшей математической моделью заболевания. Данная математическая модель может использоваться для интерпретации клинических исследований.
моделирование эксперимент медицина математический
4. Виды моделей
Структура модели - это упорядоченное множество элементов и их отношений. Параметр - это величина, характеризующая свойство или режим работы объекта. Выходные параметры характеризуют свойства технического объекта, а внутренние параметры - свойства его элементов. Внешние параметры - это параметры внешней Среды, оказывающей влияние на функционирование технического объекта. К математическим моделям предъявляются требования адекватности, экономичности, универсальности. Эти требования противоречивы. В зависимости от степени абстрагирования при описании физических свойств технической системы различают три основных иерархических уровня: верхний или метауровень, средний или макроуровень, нижний или микроуровень. Метауровень соответствует начальным стадиям проектирования, на которых осуществляется научно-технический поиск и прогнозирование, разработка концепции и технического решения, разработка технического предложения. Для построения математических моделей метауровня используют методы морфологического синтеза, теории графов, математической логики, теории автоматического управления, теории массового обслуживания, теории конечных автоматов. На макроуровне объект рассматривается как динамическая система с сосредоточенными параметрами. Математические модели макроуровня представляют собой системы обыкновенных дифференциальных уравнений. Эти модели используют при определении параметров технического объекта и его функциональных элементов. На микроуровне объект представляется как сплошная Среда с распределенными параметрами. Для описания процессов функционирования таких объектов используют дифференциальные уравнения в частных производных. На микроуровне проектируют неделимые по функциональному признаку элементы технической системы, называемые базовыми элементами. При этом базовый элемент рассматривается как система, состоящая из множества однотипных функциональных элементов одной и той же физической природы, взаимодействующих между собой и находящихся под воздействием внешней Среды и других элементов технического объекта, являющихся внешней средой по отношению к базовому элементу. По форме представления математических моделей различают инвариантную, алгоритмическую, аналитическую и графическую модели объекта проектирования. В инвариантной форме математическая модель представляется системой уравнений вне связи с методом решения этих уравнений. В алгоритмической форме соотношения модели связаны с выбранным численным методом решения и записаны в виде алгоритма - последовательности вычислений. Среди алгоритмических моделей выделяют имитационные , модели предназначенные для имитации физических и информационных процессов, протекающих в объекте при его функционировании под воздействием различных факторов внешней среды. Аналитическая модель представляет собой явные зависимости искомых переменных от заданных величин (обычно зависимости выходных параметров объекта от внутренних и внешних параметров). Такие модели получают на основе физических законов, либо в результате прямого интегрирования исходных дифференциальных уравнений. Аналитические математические модели позволяют легко и просто решать задачи определения оптимальных параметров. Поэтому, если представляется возможность получения модели в таком виде, ее всегда целесообразно реализовать, даже если при этом придется выполнить ряд вспомогательных процедур, Такие модели обычно получают методом планирования эксперимента (вычислительного или физического). Графическая (схемная) модель представляется в виде графов, эквивалентных схем, динамических моделей, диаграмм и т.п. Для использования графических моделей должно существовать правило однозначного соответствия условных изображений элементов графической и компонентов инвариантной математических моделей. Деление математических моделей на функциональные и структурные определяется характером отображаемых свойств технического объекта. Структурные модели отображают только структуру объектов и используются только при решении задач структурного синтеза. Параметрами структурных моделей являются признаки функциональных или конструктивных элементов, из которых состоит технический объект и по которым один вариант структуры объекта отличается от другого. Эти параметры называют морфологическими перемененными. Структурные модели имеют форму таблиц, матриц и графов. Наиболее перспективно применение древовидных графов типа И-ИЛИ-дерева. Такие модели широко используют на метауровне при выборе технического решения. Функциональные модели описывают процессы функционирования технических объектов и имеют форму систем уравнений. Они учитывают структурные и функциональные свойства объекта и позволяют решать задачи как параметрического, так и структурного синтеза. Их широко используют на всех уровнях проектирования. На метауровне функциональные задачи позволяют решать задачи прогнозирования, на макроуровне - выбора структуры и оптимизации внутренних параметров технического объекта, на микроуровне - оптимизации параметров базовых элементов. ПО способам получения функциональные математические модели делятся на теоретические и экспериментальные. Теоретические модели получают на основе описания физических процессов функционирования объекта, а экспериментальные - на основе поведения объекта во внешней среде, рассматривая его как "черный ящик". Эксперименты при этом могут быть физические (на техническом объекте или его физической модели) или вычислительные (на теоретической математической модели). При построении теоретических моделей используется физический и формальный подходы. Физический подход сводится к непосредственному применению физических законов для описания объектов, например, законов Ньютона, Гука, Кирхгофа и т.д. Формальный подход использует общие математические принципы и применяется при построении как теоретических, так и экспериментальных моделей. Экспериментальные модели - формальные. Они не учитывают всего комплекса физических свойств элементов исследуемой технической системы, а лишь устанавливают обнаруживаемую в процессе эксперимента связь между отдельными параметрами системы, которые удается варьировать и (или) осуществлять их измерение. Такие модели дают адекватное описание исследуемых процессов лишь в ограниченной области пространства параметров, в которой осуществлялось варьирование параметров в эксперименте. Поэтому экспериментальные математические модели носят частный характер, в то время как физические законы отражают общие закономерности явлений и процессов, протекающих как во всей технической системе, так и в каждом ее элементе в отдельности. Следовательно, экспериментальные математические модели не могут быть приняты в качестве физических законов. Вместе с тем методы, применяемые для построения этих моделей широко используются при проверке научных гипотез. Функциональные математические модели могут быть линейные и нелинейные. Линейные модели содержат только линейные функции величин, характеризующих состояние объекта при его функционировании, и их производных. Характеристики многих элементов реальных объектов нелинейные. Математические модели таких объектов включают нелинейные функции этих величин и их производных и относятся к нелинейным. Если при моделировании учитываются инерционные свойства объекта и (или) изменение во времени объекта или внешней Среды, то модель называют динамической. В противном случае модель - статическая. Математическое представление динамической модели в общем случае может быть выражено системой дифференциальных уравнений, а статической - системой алгебраических уравнений. Если воздействие внешней Среды на объект носит случайный характер и описывается случайными функциями. В этом случае требуется построение вероятностной математической модели. Однако такая модель весьма сложная и ее использование при проектировании технических объектов требует больших затрат машинного времени. Поэтому ее применяют на заключительном этапе проектирования. Большинство проектных процедур выполняется на детерминированных моделях. Детерминированная математическая модель характеризуется взаимно однозначным соответствием между внешним воздействием на динамическую систему и ее реакцией на это воздействие. В вычислительном эксперименте при проектировании обычно задают некоторые стандартные типовые воздействия на объект: ступенчатые, импульсные, гармонические, кусочно-линейные, экспоненциальные и др. Их называют тестовыми воздействиями.
Размещено на Allbest.ru
...Подобные документы
Моделирование как метод познания. Классификаций и характеристика моделей: вещественные, энергетические и информационные. Математическая модель "хищники-жертвы", ее сущность. Порядок проверки и корректировки модели. Решение уравнений методом Рунге-Кутта.
методичка [283,3 K], добавлен 30.04.2014Вводные понятия. Классификация моделей. Классификация объектов (систем) по их способности использовать информацию. Этапы создания модели. Понятие о жизненном цикле систем. Модели прогнозирования.
реферат [36,6 K], добавлен 13.12.2003Моделирование как метод научного познания, его сущность и содержание, особенности использования при исследовании и проектировании сложных систем, классификация и типы моделей. Математические схемы моделирования систем. Основные соотношения моделей.
курсовая работа [177,9 K], добавлен 15.10.2013Операторы преобразования переменных, классы, способы построения и особенности структурных моделей систем управления. Линейные и нелинейные модели и характеристики систем управления, модели вход-выход, построение их временных и частотных характеристик.
учебное пособие [509,3 K], добавлен 23.12.2009Особенности математических моделей и моделирования технического объекта. Применение численных математических методов в моделировании. Методика их применения в системе MathCAD. Описание решения задачи в Mathcad и Scilab, реализация базовой модели.
курсовая работа [378,5 K], добавлен 13.01.2016Свойства, применение и способы получения озона. Строение и виды озонаторов. Моделирование тепловых явлений в озонаторе. Физические законы тепловыделения, теплопроводности и теплопереноса. Расчет построенной модели на языке программирования Pascal.
курсовая работа [284,2 K], добавлен 23.03.2014Математическое моделирование динамики биологических видов (популяций) Т. Мальтусом. Параметры и основное уравнение модели "хищник-жертва", ее практическое применение. Качественное исследование элементарной и обобщенной модификаций модели В. Вольтерра.
курсовая работа [158,1 K], добавлен 22.04.2011Суть компьютерного моделирования. Система, модели и имитационное моделирование. Механизмы продвижения времени. Компоненты дискретно-событийной имитационной модели. Усиление и ослабление факторов сопутствующих активности гейзера, динамическая модель.
курсовая работа [776,2 K], добавлен 28.06.2013Решение дифференциального уравнения методом Адамса. Нахождение параметров синтезирования регулятора САУ численным методом. Решение дифференциального уравнения неявным численным методом. Анализ системы с использованием критериев Михайлова и Гурвица.
курсовая работа [398,2 K], добавлен 13.07.2010Математическое моделирование задач коммерческой деятельности на примере моделирования процесса выбора товара. Методы и модели линейного программирования (определение ежедневного плана производства продукции, обеспечивающей максимальный доход от продажи).
контрольная работа [55,9 K], добавлен 16.02.2011Моделирование входного заданного сигнала, построение графика, амплитудного и фазового спектра. Моделирование шума с законом распределения вероятностей Рэлея, оценка дисперсии отсчетов шума и проверка адекватности модели шума по критерию Пирсона.
курсовая работа [2,3 M], добавлен 25.11.2011Изучение физического процесса как объекта моделирования. Описание констант и параметров, переменных, используемых в физическом процессе. Схема алгоритма математической модели, обеспечивающая вычисление заданных зависимостей физического процесса.
курсовая работа [434,5 K], добавлен 21.05.2022Математика как чрезвычайно мощный и гибкий инструмент при изучении окружающего мира. Роль математики в промышленной сфере, строительстве, медицине и жизни человека. Место математического моделирования в создании разнообразных архитектурных моделей.
презентация [566,8 K], добавлен 31.03.2015Назначение, состав и структура математического обеспечения в автоматизированных системах, формализация и моделирование управленческих решений, этапы разработки. Модели и алгоритмы обработки информации. Характеристика метода исследования операции.
презентация [17,7 K], добавлен 07.05.2011Основные положения теории математического моделирования. Структура математической модели. Линейные и нелинейные деформационные процессы в твердых телах. Методика исследования математической модели сваи сложной конфигурации методом конечных элементов.
курсовая работа [997,2 K], добавлен 21.01.2014Возникновение и развитие теории динамических систем. Развитие методов реконструкции математических моделей динамических систем. Математическое моделирование - один из основных методов научного исследования.
реферат [35,0 K], добавлен 15.05.2007Моделирование непрерывной системы контроля на основе матричной модели объекта наблюдения. Нахождение передаточной функции формирующего фильтра входного процесса. Построение графика зависимости координаты и скорости от времени, фазовой траектории системы.
курсовая работа [1,5 M], добавлен 25.12.2013Сущность моделирования, значение и необходимость создания различных моделей, сферы их практического использования. Свойства объекта, существенные и несущественные для принятия решений. Граф как средство наглядного представления состава и структуры схемы.
презентация [4,3 M], добавлен 26.06.2014Анализ динамических процессов в системе на основе использования построенной аналитической модели. Моделирование с использованием пакета расширения Symbolic Math Tolbox. Построение модели в виде системы дифференциальных уравнений, записанных в форме Коши.
курсовая работа [863,4 K], добавлен 21.06.2015Процесс выбора или построения модели для исследования определенных свойств оригинала в определенных условиях. Стадии процесса моделирования. Математические модели и их виды. Адекватность математических моделей. Рассогласование между оригиналом и моделью.
контрольная работа [69,9 K], добавлен 09.10.2016