Линейная алгебра
Расчет нахождения модуля вектора, скалярного произведения, векторного и смешанного произведения векторов. Нахождение заданных координат с помощью формулы расчета по методу Крамера. Вычисление вращающего момента силы, периметра и площади треугольника.
Рубрика | Математика |
Вид | задача |
Язык | русский |
Дата добавления | 31.03.2014 |
Размер файла | 88,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ЗАДАНИЕ № 1.1
Заданы три точки пространства А(3,1,4), В(-1,0,1) и С(1,7,3). Найти: а)
б) модуль вектора ;
в) скалярное произведение
г) векторное произведение векторов ;
д) смешанное произведение векторов ; .
Решение. а)
б)
в)
г)
д)
ЗАДАНИЕ № 1.2
вектор координата площадь модуль
Доказать, что векторы , , образуют базис, и найти координаты вектора в этом базисе.
Решение. Векторы образуют базис, если они линейно независимы, т.е. . Это приводит к системе, которая должна иметь только нулевое решение:
Это возможно только, если ее определитель не равен нулю.
Следовательно, векторы образуют базис.
Тогда вектор является их линейной комбинацией:
Числа будут координатами вектора в базисе . Найдем их:
Используем метод Крамера.
Тогда
.
Получили вектор в базисе .
Ответ:
ЗАДАНИЕ № 1.3
Сила приложена к точке А(2, 0, -1). Вычислить:
а) работу силы , если точка ее приложения, двигаясь прямолинейно, переместилась в точку В(-2, -1, 0);
б) модуль вращающего момента силы относительно точки В.
Решение. а) Если некоторая сила приложена к материальной точке А и при этом точка А прямолинейно переместилась в точку В, то работа А силы определяется по формуле где
Находим:
б) Для нахождения вращающего момента силы пользуемся формулой где - сила, приложенная к точке А, относительно точки В.
Получаем:
Ответ: а) -1; б) .
ЗАДАНИЕ № 1.4
Заданы три точки пространства А(3,1,4), В(-1,0,1) и С(1,7,3). Найти:
а) уравнение стороны АВ треугольника АВС;
б) периметр треугольника (до 0,01);
в) уравнение плоскости (АВС);
г) площадь треугольника (до 0,01).
Решение. а) Уравнение прямой, проходящей через две точки и , имеет вид (АВ):
б) Периметр треугольника - это сумма длин его сторон. Длина стороны - это расстояние между двумя точками плоскости:
|АВ| =
|ВС| =
|АС| =
Р = |АВ| + |ВС| + |АС| =
в) Найдем общее уравнение плоскости АВС, для чего воспользуемся уравнением плоскости, проходящей через три точки:
г) Известно, что
.
Находим: , ,
Окончательно имеем:
ед. кв.
ЗАДАНИЕ № 1.5
Проверить совместность системы линейных алгебраических уравнений и решить ее:
а) методом Крамера;
б) методом Гаусса;
в) матричным методом.
Решение. Вычислим определитель матрицы системы:
Следовательно, система совместна и имеет единственное решение.
а) Вычислим частные определители системы:
Тогда по формулам Крамера получаем:
б) Расширенная матрица системы:
в) Найдем обратную матрицу.
Получаем, что .
Тогда
Ответ: (-1, -2, 0).
Размещено на Allbest.ru
...Подобные документы
Задача на вычисление скалярного произведения векторов. Нахождение модуля векторного произведения. Проверка коллинеарности и ортогональности. Составление канонического уравнения эллипса, гиперболы, параболы. Нахождение косинуса угла между его нормалями.
контрольная работа [102,5 K], добавлен 04.12.2013Методика расчета скалярного произведения заданных векторов. Расчет определителей и рангов матриц, нахождение обратных матриц. Разрешение уравнений по методу Крамера, обратной матрицы, а также встроенной функции lsolve. Анализ полученных результатов.
лабораторная работа [86,8 K], добавлен 13.10.2014Сущность понятия "скалярное произведение векторов". Законы векторного произведения. Практический пример нахождения площади треугольника. Общее понятие о правой и левой тройке. Содержание закона круговой переместительности. Объём треугольной пирамиды.
презентация [373,9 K], добавлен 16.11.2014Основные определения и свойства скалярного произведения. Необходимое и достаточное условие перпендикулярности векторов. Проекция произвольного вектора. Геометрический смысл скалярного произведения. Проведение нормализации вектора, его направление.
курсовая работа [491,4 K], добавлен 13.01.2014Методика проверки совместности системы уравнений и ее решение. Вычисление параметров однородной системы линейных алгебраических уравнений. Нахождение по координатам модуля, проекции вектора, скалярного произведения векторов. Составление уравнения прямой.
контрольная работа [104,2 K], добавлен 23.01.2012Вычисление скалярного и векторного произведений векторов, заданных в прямоугольной декартовой системе координат. Расчет длины ребра пирамиды по координатам ее вершин. Поиск координат симметричной точки. Определение типа линии, описываемой уравнением.
контрольная работа [892,1 K], добавлен 12.05.2016Аксиомы линейного векторного пространства. Произведение любого вектора на число 0. Аксиомы размерности, доказательство теоремы. Дистрибутивность скалярного произведения векторов относительно сложения векторов. Требования, предъявляемые к системе аксиом.
реферат [80,9 K], добавлен 28.03.2014Векторы в трехмерном пространстве. Линейные операции над векторами. Общее понятие про скалярные величины. Проекции векторов, их свойства. Коммутативность скалярного произведения, неравенство Коши-Буняковского. Примеры скалярного произведения векторов.
контрольная работа [605,8 K], добавлен 06.05.2012Решение системы уравнений по формулам Крамера и методом Гаусса. Нахождение объема пирамиды, площади грани, величины проекции вектора с помощью средств векторной алгебры. Пример определения и решения уравнения стороны, высоты и медианы треугольника.
контрольная работа [989,1 K], добавлен 22.04.2014Расчет площади равнобедренного и равностороннего треугольника. Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы. Расчет размеров медианы, биссектрисы.
презентация [68,7 K], добавлен 16.04.2011Пример вычисления определителя второго порядка в общем виде. Свойства векторного произведения и их доказательства. Пример применения правила Крамера для решения систем из n уравнений с n неизвестными. Векторное произведение векторов заданных проекциями.
контрольная работа [297,9 K], добавлен 14.03.2009Решение задач систем линейных алгебраических уравнений, матричных уравнений, методы Гаусса и Кремера. Нахождение длины и координат вектора и исчисление его скалярного произведения. Уравнение прямой и определение координат точек неравенства; пределы.
контрольная работа [220,9 K], добавлен 06.01.2011Вектор в декартовой системе координат как упорядоченная пара точек (начало вектора и его конец). Линейные операции с векторами. Базис на плоскости и в пространстве. Свойства скалярного произведения. Кривые второго порядка. Каноническое уравнение параболы.
учебное пособие [312,2 K], добавлен 09.03.2009Решение системы линейных уравнений методами Крамера, обратной матрицы и Гаусса. Расчет длин и скалярного произведения векторов. Уравнение прямой, проходящей через точку параллельно направляющему вектору. Расчет производных функций одной и двух переменных.
контрольная работа [984,9 K], добавлен 19.04.2013Нахождение произведения для заданных множеств. Вычисление предела функции с использованием основных теорем. Раскрытие неопределенности с использованием правила Лопиталя. Нахождение производной и вычисление неопределенного интеграла методом подстановки.
контрольная работа [260,0 K], добавлен 02.02.2011Изучение свойств геометрических объектов при помощи алгебраических методов. Основные операции над векторами. Умножение вектора на отрицательное число. Скалярное произведение векторов. Нахождение угла между векторами. Нахождение координат вектора.
контрольная работа [56,3 K], добавлен 03.12.2014Вычисление определителей матриц. Метод приведения матрицы к треугольному виду. Решение системы уравнений методами Крамера, Жордана-Гауса и матричным. Канонические уравнения для нахождения центра, вершины, полуоси, эксцентриситета, директрис эллипса.
контрольная работа [797,4 K], добавлен 18.11.2013Расчет произведения заданных матриц. Решение системы линейных алгебраических уравнений по формулам Крамера, матричным методом и методом Гаусса. Координаты вектора в базисе. Определение ранга заданной матрицы. Система с базисом методом Жордана-Гаусса.
контрольная работа [88,2 K], добавлен 19.01.2014Геометрическая фигура, образованная тремя фигурами, которые соединяют три не лежащие на одной прямой точки. Основные формулы площади треугольника. Решение задач на нахождение площади треугольника через две его стороны и высоту, проведенную к основанию.
презентация [240,0 K], добавлен 21.04.2015Определение разности и произведения матриц. Решение системы линейных уравнений методом Крамера. Уравнение прямой проходящей через точки A (xa, ya) и C (xc, yc). Порядок определения типа кривой второго порядка и ее основных геометрических характеристик.
контрольная работа [272,0 K], добавлен 11.12.2012