Применение методов дисперсионного анализа в экономике
Дисперсионный анализ как раздел математической статистики, посвященный методам выявления влияния отдельных факторов на результат эксперимента. Методика его проведения. Изменение качественных факторов в процессе наблюдения за исследуемым объектом.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 01.04.2014 |
Размер файла | 74,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
1. Основные понятия
Дисперсионный анализ -- раздел математической статистики, посвященный методам выявления влияния отдельных факторов на результат эксперимента.
При этом исходят из положения о том, что существенность фактора в определенных условиях характеризуется его вкладом в дисперсию результата. Английский статист Р. Фишер, разработавший этот метод, определил его как “отделение дисперсии, приписываемой одной группе причин, от дисперсии, приписываемой другим группам”.
Анализ производится следующим образом:
1. Группируют совокупность наблюдений по факторному признаку.
2. Находят среднее значение результата и дисперсию по каждой группе.
3. Определяют общую дисперсию и вычисляют, какая доля ее зависит от условий, общих для всех групп, какая -- от исследуемого фактора, а какая -- от случайных причин.
4. С помощью специального критерия определяют, насколько существенны различия между группами наблюдений и, следовательно, можно ли считать ощутимым влияние тех или иных факторов.
Дисперсионный анализ применяется в планировании эксперимента и в ряде областей экономических исследований, где он служит, в частности, предварительным этапом к регрессионному анализу статистических данных, поскольку позволяет выделить относительно небольшое (но достаточное для целей исследования) количество параметров регрессии.
В процессе наблюдения за исследуемым объектом качественные факторы произвольно или заданным образом изменяются. Конкретная реализация фактора называется уровнем фактора или способом обработки. Модель дисперсионного анализа с фиксированными уровнями факторов называют моделью I, модель со случайными факторами - моделью II. Благодаря варьированию фактора можно исследовать его влияние на величину отклика. В настоящее время общая теория дисперсионного анализа разработана для моделей I.
В зависимости от количества факторов, определяющих вариацию результативного признака, дисперсионный анализ подразделяют на однофакторный и многофакторный.
Основными схемами организации исходных данных с двумя и более факторами являются:
* перекрестная классификация, характерная для моделей I, в которых каждый уровень одного фактора сочетается при планировании эксперимента с каждой градацией другого фактора;
* иерархическая (гнездовая) классификация, характерная для модели II, в которой каждому случайному, наудачу выбранному значению одного фактора соответствует свое подмножество значений второго фактора.
Если одновременно исследуется зависимость отклика от качественных и количественных факторов, т.е. факторов смешанной природы, то используется ковариационный анализ.
При обработке данных эксперимента наиболее разработанными и поэтому распространенными считаются две модели. Их различие обусловлено спецификой планирования самого эксперимента. В модели дисперсионного анализа с фиксированными эффектами исследователь намеренно устанавливает строго определенные уровни изучаемого фактора. Термин «фиксированный эффект» в данном контексте имеет тот смысл, что самим исследователем фиксируется количество уровней фактора и различия между ними. При повторении эксперимента он или другой исследователь выберет те же самые уровни фактора. В модели со случайными эффектами уровни значения фактора выбираются исследователем случайно из широкого диапазона значений фактора, и при повторных экспериментах, естественно, этот диапазон будет другим.
Таким образом, данные модели отличаются между собой способом выбора уровней фактора, что, очевидно, в первую очередь влияет на возможность обобщения полученных экспериментальных результатов. Для дисперсионного анализа однофакторных экспериментов различие этих двух моделей не столь существенно, однако в многофакторном дисперсионном анализе оно может оказаться весьма важным.
При проведении дисперсионного анализа должны выполняться следующие статистические допущения: независимо от уровня фактора величины отклика имеют нормальный (Гауссовский) закон распределения и одинаковую дисперсию. Такое равенство дисперсий называется гомогенностью. Таким образом, изменение способа обработки сказывается лишь на положении случайной величины отклика, которое характеризуется средним значением или медианой. Поэтому все наблюдения отклика принадлежат сдвиговому семейству нормальных распределений.
При неизвестном законе распределения величин отклика используют непараметрические (чаще всего ранговые) методы анализа.
дисперсионный математический статистика
2. Основные понятия о дисперсионном анализе
В основе дисперсионного анализа лежит разделение дисперсии на части или компоненты. Вариацию, обусловленную влиянием фактора, положенного в основу группировки, характеризует межгрупповая дисперсия . Она является мерой вариации частных средних по группам вокруг общей средней и определяется по формуле:
,
где k - это число групп; - число единиц в j-ой группе; - частная средняя по j-ой группе; - общая средняя по совокупности единиц.
Вариацию, обусловленную влиянием прочих факторов, характеризует в каждой группе внутригрупповая дисперсия :
.
На основании внутригрупповой дисперсии можно определить общую среднюю из внутригрупповых дисперсий:
.
Между общей дисперсией , средней из внутригупповых и межгрупповой дисперсией существует соотношение:
= .
При качественной группировке межгрупповая стремится к общей , а средняя из внутригрупповых к 0 а .
В этом случае фактор, положенный в основание группировки выбран правильно.
Коэффициент детерминации показывает, какая доля всего вариационного результативного признака обусловлена факторным признаком:
.
Коэффициент корреляции показывает тесноту связи между факторным и результативным признаками. При качественной группировке эмпирический коэффициент корреляции стремится к единице. Для оценки тесноты связи используют соотношение Чеддока
Табл. 1
0,1-0,3 |
0,3-0,5 |
0,5-0,7 |
0,7-0,9 |
0,9-0,99 |
||
Сила связи |
Слабая |
Умеренная |
Заметная |
Высокая |
Весьма высокая |
.
3. Однофакторный дисперсионный анализ
Задачей дисперсионного анализа является изучение влияния одного или нескольких факторов на рассматриваемый признак.
Однофакторный дисперсионный анализ используется в тех случаях, когда есть в распоряжении более двух независимых выборок, полученных из одной генеральной совокупности путем изменения какого-либо независимого фактора, для которого по каким-либо причинам нет количественных измерений.
Для этих выборок предполагают, что они имеют разные выборочные средние и одинаковые выборочные дисперсии. Поэтому необходимо ответить на вопрос, оказал ли этот фактор существенное влияние на разброс выборочных средних или разброс является следствием случайностей, вызванных небольшими объемами выборок. Другими словами если выборки принадлежат одной и той же генеральной совокупности, то разброс данных между выборками (между группами) должен быть не больше, чем разброс данных внутри этих выборок (внутри групп).
Пусть - i - элемент (i= k - выборки (k=), где m - число выборок, - число данных в k - выборке. Тогда - выборочное среднее k-выборки определяется по формуле:
.
Общее среднее вычисляется по формуле:
, где .
Основное тождество дисперсионного анализа имеет следующий вид:
,
где - сумма квадратов отклонений выборочных средних от общего среднего (сумма квадратов отклонений между группами); - сумма квадратов отклонений наблюдаемых значений от выборочной средней (сумма квадратов отклонений внутри групп); Q - общая сумма квадратов отклонений наблюдаемых значений от общего среднего .
Расчет этих сумм квадратов отклонений осуществляется по следующим формулам:
,
,
.
В качестве критерия необходимо воспользоваться критерием Фишера:
.
Если расчетное значение критерия Фишера будет меньше, чем табличное значение - нет оснований считать, что независимый фактор оказывает влияние на разброс средних значений, в противном случае, независимый фактор оказывает существенное влияние на разброс средних значений (л- уровень значимости, уровень риска, обычно для экономических задач л=0,05).
Недостаток однофакторного анализа: невозможно выделить те выборки, которые отличаются от других. Для этой цели необходимо использовать метод Шеффе или проводить парные сравнения выборок.
Табл. 2. Базовая таблица однофакторного дисперсионного анализа
Компоненты дисперсии |
Сумма квадратов |
Число степеней свободы |
Средний квадрат |
Математическое ожидание среднего квадрата |
|
Межгрупповая |
m-1 |
= /(m-1) |
|||
Внутригрупповая |
mn-m |
= /(mn-m) |
M()= |
||
Общая |
mn-1 |
Список используемой литературы
1. Орлов А.И. «Математика случая: Вероятность и статистика - основные факты» Учебное пособие. - М.: МЗ-Пресс, 2004. - 110с.
2. Ветров А.А., Ломовацкий Г.И. - «Дисперсионный анализ в экономике» 1975. 120с
3. Шеффе Г. «Дисперсионный анализ» - М.: Наука, 1980. -512c.
Размещено на Allbest.ru
...Подобные документы
Изучение раздела математической статистики, посвященного методам выявления влияния отдельных факторов на результат эксперимента. Эффекты взаимодействия. Использование однофакторного дисперсионного анализа для сравнения средних значений нескольких выборок.
презентация [110,0 K], добавлен 09.11.2014Общее понятие о дисперсионном анализе, его сущность и значение. Использование INTERNET и компьютера для проведения дисперсионного анализа, особенности работы в среде MS Excel. Примеры применения однофакторного и двухфакторного дисперсионного анализа.
курсовая работа [820,4 K], добавлен 17.02.2013Дисперсионный анализ. Применение дисперсионного анализа в различных задачах и исследованиях. Дисперсионный анализ в контексте статистических методов. Векторные авторегрессии. Факторный анализ.
курсовая работа [139,8 K], добавлен 29.05.2006Построение статистических таблиц. Оценка достоверности влияния организованных и неучтенных факторов на величину результативного признака. Определение числа степеней свободы в однофакторном комплексе. Обработка двухфакторного дисперсионного комплекса.
презентация [134,4 K], добавлен 14.04.2013Планирование эксперимента для описания зависимости показателя стойкости концевых фрез от геометрических параметров. Уровни факторов и интервалы варьирования. Применение неполной кубической функции. Использование полного факторного эксперимента.
практическая работа [38,6 K], добавлен 23.08.2015Что такое абсолютные и относительные величины. Применение абсолютной и относительной величины в статистике. Прикладные варианты использования методов математической статистики в различных случаях решения задач. Опыт построения статистических таблиц.
контрольная работа [39,6 K], добавлен 12.12.2009Значение математической статистики для анализа закономерностей массовых явлений. Основные теоретические выкладки корреляционного анализа. Применение его инструментария в контексте металлургической промышленности в среде программного средства Statistica 6.
реферат [261,4 K], добавлен 03.08.2014Методы регистрации, описания и анализа статистических экспериментальных данных, получаемых в результате наблюдения массовых случайных явлений. Обзор задач математической статистики. Закон распределения случайной величины. Проверка правдоподобия гипотез.
презентация [113,3 K], добавлен 01.11.2013Оценки параметров распределения, наиболее важные распределения, применяемые в математической статистике: нормальное распределение, распределения Пирсона, Стьюдента, Фишера. Факторное пространство, формулирование цели эксперимента и выбор откликов.
реферат [105,5 K], добавлен 01.01.2011Оценка надежности аналитической методики. Дисперсионный анализ результатов опытов и аппроксимация результатов эксперимента. Расчет линейного уравнения связи. Определение полного квадратного уравнения. Вычисление типа и объема химического реактора.
курсовая работа [229,2 K], добавлен 06.01.2015Понятие математической статистики как науки о математических методах систематизации и использования статистических данных для научных и практических выводов. Точечные оценки параметров статистических распределений. Анализ вычисления средних величин.
курсовая работа [215,1 K], добавлен 13.12.2014Словесная, математическая постановка исходной задачи. Исследование математической задачи на корректность. Применение метода экспертных оценок и парных сравнений основных объективных, субъективных факторов, послуживших причиной к поступлению учиться в МАИ.
курсовая работа [145,1 K], добавлен 19.12.2009Проведение аналитической группировки и дисперсионного анализа данных, с целью количественно определить тесноту связи. Определение степени корреляции между группировочными признаками и вариационной зависимости переменной, обусловленной регрессией.
контрольная работа [140,5 K], добавлен 17.08.2014Определение вероятности, что машина с неисправной ходовой частью имеет также неисправный мотор. Методика вычисления дисперсии. Проверка статистических гипотез и дисперсионный анализ. Формирование контрольных карт, их содержание и принципы построения.
курсовая работа [686,4 K], добавлен 31.01.2015Оптимизация как раздел математики, ее определение, сущность, цели, формулировка и особенности постановки задач. Общая характеристика различных методов математической оптимизации функции. Листинг программ основных методов решения задач оптимизации функции.
курсовая работа [414,1 K], добавлен 20.01.2010Построение многофакторной корреляционно-регрессионной модели доходности предприятия: оценка параметров функции регрессии, анализ факторов на управляемость, экономическая интерпретация модели. Прогнозирование доходности на основе временных рядов.
дипломная работа [5,1 M], добавлен 28.06.2011Исторические аспекты развития статистики, ее предмет. Понятие статистической методологии. Организация государственной и международной статистики. Программа и формы статистического наблюдения. Формы вариационного ряда. Средняя арифметическая и ее свойства.
шпаргалка [37,9 K], добавлен 12.12.2010Классификация случайных событий. Функция распределения. Числовые характеристики дискретных случайных величин. Закон равномерного распределения вероятностей. Распределение Стьюдента. Задачи математической статистики. Оценки параметров совокупности.
лекция [387,7 K], добавлен 12.12.2011Теория вероятности, понятие вероятности события и её классификация. Понятие комбинаторики и её основные правила. Теоремы умножения вероятностей. Понятие и виды случайных величин. Задачи математической статистики. Расчёт коэффициента корреляции.
шпаргалка [945,2 K], добавлен 18.06.2012Дисперсионный анализ по одному признаку для проверки равенства нескольких средних. Множественная линейная регрессия. Зависимость ВАШБП и ВАШСП от показателей активности в динамике. Дисперсионный анализ и линейная регрессия, артрит реактивный.
курсовая работа [2,2 M], добавлен 08.08.2010