Системы счисления

История возникновения систем счисления. Арифметические действия над десятичными числами. Порядок определения значения цифр в вавилонской цивилизации. Древнеегипетская десятичная непозиционная система. Современная классификация операций счисления.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 20.04.2014
Размер файла 656,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

"Все есть число", - говорили пифагорийцы, подчеркивая необычайно важную роль чисел в практической деятельности.

Интуитивное представление о числе, по-видимому, так же старо, как и само человечество, хотя с достоверностью проследить все ранние этапы его развития в принципе невозможно. Прежде чем человек научился считать или придумал слова для обозначения чисел, он, несомненно, владел наглядным, интуитивным представлением о числе, позволявшим ему различать одного человека и двух людей или двух и многих людей. То, что первобытные люди сначала знали только "один", "два" и "много", подтверждается тем, что в некоторых языках, например в греческом, существуют три грамматические формы: единственного числа, двойственного числа и множественного числа. Позднее человек научился делать различия между двумя и тремя деревьями и между тремя и четырьмя людьми. Счет изначально был связан с вполне конкретным набором объектов, и самые первые названия чисел были прилагательными. Например, слово "три" использовалось только в сочетаниях "три дерева" или "три человека"; представление о том, что эти множества имеют между собой нечто общее - понятие троичности - требует высокой степени абстракции. Названия чисел, выражающие весьма абстрактные идеи, появились, несомненно, позже, чем первые грубые символы для обозначения числа объектов в некоторой совокупности. Считать человек начал задолго до того, как он научился писать, поэтому не сохранилось никаких письменных документов, свидетельствовавших о тех словах, которыми в древности обозначали числа. Для кочевых племен характерны устные названия чисел, что же касается письменных, то необходимость в них появилась лишь с переходом к оседлому образу жизни, образованием земледельческих сообществ. Возникла и необходимость в системе записи чисел, и именно тогда было заложено основание для развития математики.

Сегодня мы привыкли пользоваться в повседневной жизни десятичной системой счисления. Десятичными цифрами выражаются время, номера домов и телефонов, цены, бюджет, на них базируется метрическая система мер.

Арифметические действия над десятичными числами производятся с помощью достаточно простых операций, в основе которых лежат известные каждому школьнику таблицы умножения и сложения. Изучаемые в самом раннем возрасте, эти правила в результате повседневной практики усваиваются так прочно, что мы оперируем ими уже подсознательно. По этой причине сегодня многие люди даже не догадываются о существовании других систем счисления.

1. История систем счисления

Современный человек в повседневной жизни постоянно сталкивается с числами: мы запоминаем номера автобусов и телефонов, в магазине подсчитываем стоимость покупок, ведём свой семейный бюджет в рублях и копейках (сотых долях рубля) и т.д. Числа, цифры... они с нами везде. А что знал человек о числах несколько тысяч лет назад? Вопрос непростой, но очень интересный. Историки доказали, что и пять тысяч лет назад люди могли записывать числа и производить над ними арифметические действия. Конечно, принципы записи были совсем не такими, как сейчас. Но в любом случае число изображалось с помощью одного или нескольких символов.

Эти символы, участвующие в записи числа, в математике и информатике принять называть цифрами

Но что люди понимают под словом "число"?

Первоначально понятие отвлечённого числа отсутствовало, число было "привязано" к тем конкретным предметам, которые пересчитывали. Отвлечённое понятие натурального числа появляется вместе с развитием письменности. Дробные же числа изобрели тогда, когда возникла необходимость производить измерения. Измерение, как известно, это сравнение с другой величиной того же рода, выбираемой в качестве эталона.

Эталон называется ещё единицей измерения. Понятно, что единица измерения не всегда укладывалась целое число раз в измеряемой величине. Отсюда и возникла практическая потребность ввести более "мелкие" числа, чем натуральные. Дальнейшее развитие понятия числа было обусловлено уже развитием математики.

1.1 Единичная система

Потребность в записи чисел появилась в очень древние времена, как только люди начали считать. Количество предметов, например овец, изображалось нанесением чёрточек или засечек на какой - либо твёрдой поверхности: камне, глине, дереве (до изобретения бумаги было ещё очень и очень далеко). Каждой овце в такой записи соответствовала одна чёрточка. Археологами найдены такие "записи" при раскопках культурных слоёв, относящихся к периоду палеолита (10 - 11 тысяч лет до н.э.).

Учёные назвали этот способ записи чисел единичной ("палочной") системой счисления. В ней для записи чисел применялся только один вид знаков - "палочка". Каждое число в такой системе счисления обозначалось с помощью строки, составленной из палочек, количество которых и равнялось обозначаемому числу.

Неудобства такой системы записи чисел и ограниченность её применения очевидны: чем большее число надо записать, тем длиннее строка из палочек. Да и при записи большого числа легко ошибиться, нанеся лишнее количество палочек или, наоборот, не дописав их.

Можно предложить, что для облегчения счёта люди стали группировать предметы по 3, 5, 10 штук. И при записи использовали знаки, соответствующие группе из нескольких предметов. Естественно, что при подсчёте использовались пальцы рук, поэтому первыми появились знаки для обозначения группа предметов из 5 и 10 штук (единиц). Таким образом, возникли уже более удобные системы записи чисел.

1.2 Древнеегипетская десятичная непозиционная система

В древнеегипетской системе счисления (см. Приложение 2), которая возникла во второй половине третьего тысячелетия до н.э., использовались специальные цифры для обозначения чисел 1, 10, 102, 103, 104, 105, 106, 107. Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из них повторялась не более девяти раз.

В основе как палочной, так и древнеегипетской системы счисления лежал простой принцип сложения, согласно которому значение числа равно сумме значений цифр, участвующих в его записи. Учёные относят древнеегипетскую систему счисления к десятичной непозиционной.

1.3 Вавилонская шестидесятеричная система

Так же далеко от наших дней, за две тысячи лет до н.э., в другой великой цивилизации вавилонской - люди записывали цифры по-другому.

Числа в этой системе счисления составлялись из знаков двух видов: прямой клин служил для обозначения единиц, а лежачий клин - для обозначения десятков.

Для определения значения числа надо было изображение числа разбить на разряды справа налево. Новый разряд начинался с появления прямого клина после лежачего, если рассматривать число справа налево.

Знаки прямой клин и лежачий клин служили цифрами в этой системе. Число 60 снова обозначалось тем же прямым клином, что и 1, этим же знаком обозначались и числа 3600=602, 216000=603 и все другие степени 60. Поэтому вавилонская система счисления получила название шестидесятеричной.

Значение числа определяли по значениям составляющих его цифр, но с учётом того, что цифры в каждом последующем разряде значили в 60 раз больше тех же цифр в предыдущем разряде.

Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а число в целом - в позиционной системе с основанием 60.

Запись числа у вавилонян была неоднозначной, т.к. не существовало цифры для обозначения нуля. Для определения абсолютного значения числа требовались дополнительные сведения. Впоследствии вавилоняне ввели специальный символ для обозначения пропущенного шестидесятеричного разряда, что соответствует появлению цифры 0 в записи десятичного числа.

Таблицу умножения вавилоняне никогда не запоминали, т.к. это было практически невозможно. При вычислениях использовались готовые таблицы умножения.

Шестидесятеричная вавилонская система - первая известная нам система счисления, частично основанная на позиционном принципе.

Система вавилонян сыграла большую роль в развитии математики и астрономии, её следы сохранились и до наших дней. Так, мы до сих пор делим час на 60 минут, а минуту на 60 секунд. Следуя примеру вавилонян, мы и окружность делим на 360 частей (градусов).

1.4 Римская система

Знакомая нам римская система не слишком принципиально отличается от египетской. В ней для обозначения чисел 1, 5, 10, 50, 100,и 1000 используются заглавные латинские буквы I, V, X, C, D и M соответственно, являющиеся цифрами этой системы счисления.

Число в римской системе счисления обозначается набором стоящих подряд цифр. Значение числа равно:

1. Сумме значений идущих подряд нескольких одинаковых цифр (назовём их группой первого вида);

2. Разности значений двух цифр, если слева от большей цифры стоит меньшая. В этом случае от значения большей цифры отнимается значение меньшей цифры. Вместе они образуют группу второго вида. Заметим, что левая цифра может быть меньше правой максимум на один порядок: так, перед L(50) и С(100) из "младших" может стоять только X(10), перед D(500) и M(1000) - только C(100), перед V(5) - только I(1);

3. Сумме значений групп и цифр, не вошедших в группы первого или второго вида.

Пример 1. Число 32 в римской системе счисления имеет вид XXXII=(X+X+X)+(I+I)=30+2 (две группы первого вида).

Пример 2. Число 444, имеющее в своей десятичной записи 3 одинаковые цифры, в римской системе счисления будет записано в виде CDXLIV=(D-C)+(L-X)+(V-I)=400+40+4 (три группы второго вида).

Пример 3. Число 1974 в римской системе счисления будет иметь вид MCMLXXIV=M+(M-C)+L+(X+X)+(V-I)=1000+900+50+20+4 (наряду с группами обоих видов в формировании числа участвуют отдельные "цифры").

1.5 Славянская система

Данная система счисления является алфавитной т.е. вместо цифр используются буквы алфавита. Данная система счисления применялась нашими предками и была достаточно сложной, т.к. использует в качестве цифр 27 букв (см. Приложение 2).

Большие числа представлялись на основе данных чисел. Данная система является непозиционной, т.е. число не зависит от последовательности цифр.

1.6 Греческая (ионийская) система

Данная система счисления, так же как и славянская, является алфавитной, т.е. использует буквы в написании чисел. Определённой букве в соответствие ставилась цифра (см. Приложение 2).

2. Классификация систем счисления

Сегодня, в самом конце XX века, для записи чисел человечество использует в основном десятичную систему счисления. А что такое система счисления?

Система счисления - это способ записи (изображения) чисел.

Различные системы счисления, которые существовали раньше и которые используются в настоящее время, делятся на три группы:

1. Непозиционные.

2. Позиционные.

3. Смешанные.

2.1 Непозиционные

Системы счисления, в которых каждой цифре соответствует величина, не зависящая от её места в записи числа, называются непозиционными.

Примерами непозиционных систем могут служить приведенные выше римская, греческая и славянская и древнеегипетская десятичная системы.

В настоящее время используются также такие непозиционные системы счисления, как биномиальная, система счисления Штерна-Броко и система остаточных классов.

2.2 Позиционные

Наиболее совершенными являются позиционные системы счисления. Они стали результатом длительного исторического развития непозиционных систем счисления. Позиционная система счисления - система записи чисел, в которых вклад каждой цифры в величину числа зависит от её положения (позиции) в последовательности цифр, изображающей число.

Например, наша привычная десятичная система является позиционной: в числе 34 цифра 3 обозначает количество десятков и "вносит" в величину числа 30, а в числе 304 та же цифра 3 обозначает количество сотен и "вносит" в величину числа 300.

Наиболее употребляемыми в настоящее время позиционными системами являются:

2 -- двоичная (в дискретной математике, информатике, программировании);

3 -- троичная;

8 -- восьмеричная;

10 -- десятичная (используется повсеместно);

12 -- двенадцатеричная (счёт дюжинами);

13 -- тринадцатеричная;

16 -- шестнадцатеричная (используется в программировании, информатике);

60 -- шестидесятеричная (единицы измерения времени, измерение углов и, в частности, координат, долготы и широты).

2.3 Смешанные

Смешанная система счисления является обобщением p-ичной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел, и каждое число x представляется как линейная комбинация, где на коэффициенты накладываются некоторые ограничения.

Наиболее известным примером смешанной системы счисления являются представление времени в виде количества суток, часов, минут и секунд.

3. Десятичная система счисления

Потребовалось много тысячелетий, чтобы люди научились называть и записывать числа так, как это делаем мы с вами. Начало этому было положено в Древнем Египте и Вавилоне. Дело в основном завершили индийские математики в V-VII веках нашей эры. Важным достижением индийской науки было введение особого обозначения для пропуска разрядов -- нуля. Арабы, познакомившись с этой нумерацией первыми, по достоинству ее оценили, усвоили и перенесли в Европу. Получив название арабской, эта система в XII веке нашей эры распространилась по всей Европе и, будучи проще и удобнее остальных систем счисления, быстро их вытеснила. Сегодня десятичными цифрами выражаются время, номера домов и телефонов, цены, бюджет, на них базируется метрическая система мер.

Время многократно изменяло облик десятичных цифр, пока они не приобрели привычный для нас вид. Изначально каждая цифра обозначала число, соответствующее количеству углов в ней. (Приложение)

Обычная система записи чисел, которой мы привыкли пользоваться в повседневной жизни, с которой мы знакомы с детства, в которой производим все наши вычисления, -- пример позиционной системе счисления.

В привычной нам системы счисления для записи чисел используются десять различных знаков (цифры 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9). Поэтому ее называют десятичной. Из двух написанных рядом одинаковых цифр левая в 10 раз больше правой. Не только сама цифра, но и ее место, ее позиция в числе имеют определяющее значение. Поэтому данную систему счисления называют позиционной.

В десятичном числе 255 = 2 * 100 + 5 * 10 + 5 * 1 цифры 5, находящиеся на разных позициях, имеют различные количественные значения -- 5 десятков и 5 единиц. При перемещении цифры на соседнюю позицию ее «вес» изменяется в 10 раз.

Место записи цифры в числе называется разрядом числа. Каждые три разряда, начиная с первого, объединены в классы.

4. Двоичная система счисления

Двоичная система счисления -- это позиционная система счисления с основанием 2. В этой системе счисления числа записываются с помощью двух символов: 0 и 1. Двоичную цифру называют битом. Двоичная система счисления является основной системой представления информации в памяти компьютера. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях, двоичная система используется практически во всех современных компьютерах и прочих устройствах на их основе.

4.1 Двоичная запись чисел

В двоичной системе счисления числа записываются с помощью двух символов (0 и 1). Чтобы не путать, в какой системе счисления записано число, его снабжают указателем справа внизу. Например, число в десятичной системе 510, в двоичной 1012. Иногда двоичное число обозначают префиксом 0b, например 0b101.

В двоичной системе счисления (как и в других системах счисления, кроме десятичной) знаки читаются по одному. Например, число 1012 произносится «один ноль один».

Отрицательные двоичные числа обозначаются так же как и десятичные: знаком «?» перед числом.

4.2 Арифметические действия в двоичной системе

Двоичное сложение

Двоичное сложение предельно просто. Только в одном случае, когда производится сложение 1+1, происходит перенос единицы в старший разряд (см. Приложение 2).

Сложение многоразрядных двоичных чисел происходит в соответствии с вышеприведенными таблицами сложения с учетом возможных переносов из младших разрядов в старшие.

Двоичное вычитание

Двоичное вычитание осуществляется следующим образом (см. Приложение 2).

Вычитание многоразрядных двоичных чисел происходит в соответствии с вышеприведенными таблицами вычитания с учетом возможных заемов из старших разрядов.

5. Преобразования

5.1 Преобразование двоичных чисел в десятичные

Основание двоичной системы счисления равно двум, это мы будем использовать. Каждую двоичниую цифру в двоичном числе умножим на два в степени, равной номеру позиции двоичной цифры в числе. Для примера возьмём числа из предыдущего раздела: 1101 и 1011 и найдём их десятичные эквиваленты.

Вот таблица позиций числа 1101:

Степени 2 равны номеру позиции.

Итак, двоичное число 1101 равно 13 в десятичной системе счисления.

Теперь число 1011. Его таблица позиций:

Степени 2 равны номеру позиции.

Итак, двоичное число 1011 равно 11 в десятичной системе счисления.

Метод Горнера.

Для того чтобы преобразовывать числа из двоичной в десятичную систему данным методом, надо суммировать цифры слева направо, умножая ранее полученный результат на основу системы (в данном случае 2). Методом Горнера обычно переводят из двоичной в десятичную систему. Обратная операция затруднительна т.к. требует навыков сложения и умножения в двоичной системе счисления.

Например, двоичное число 10110112 переводится в десятичную систему так:

0*2+ 1 = 1

1*2 + 0 = 2

2*2 + 1 = 5

5*2 + 1 = 11

11*2 + 0 = 22

22*2 + 1 = 45

45*2 + 1 = 91

То есть в десятичной системе это число будет записано как 91.

5.2 Преобразование десятичных чисел в двоичные

арифметический десятичный непозиционный счисление

Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой:

19 /2 = 9 с остатком 1

9 /2 = 4 c остатком 1

4 /2 = 2 без остатка 0

2 /2 = 1 без остатка 0

1 /2 = 0 с остатком 1

Итак, мы делим каждое частное на 2 и записываем остаток в конец двоичной записи. Продолжаем деление до тех пор, пока в частном не будет 0. Результат записываем справа налево. То есть нижняя цифра (1) будет самой левой и т.д. В результате получаем число 19 в двоичной записи: 10011.

Преобразование дробных десятичных чисел в двоичные

Если в исходном числе есть целая часть, то она преобразуется отдельно от дробной. Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму:

Дробь умножается на основание двоичной системы счисления (2);

В полученном произведении выделяется целая часть, которая принимается в качестве старшего разряда числа в двоичной системе счисления;

Алгоритм завершается, если дробная часть полученного произведения равна нулю или если достигнута требуемая точность вычислений. В противном случае вычисления продолжаются над дробной частью произведения.

Пример: Требуется перевести дробное десятичное число 206,116 в дробное двоичное число.

Перевод целой части дает 20610=110011102 по ранее описанным алгоритмам. Дробную часть 0,116 умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа:

0,116 * 2 = 0,232

0,232 * 2 = 0,464

0,464 * 2 = 0,928

0,928 * 2 = 1,856

0,856 * 2 = 1,712

0,712 * 2 = 1,424

0,424 * 2 = 0,848

0,848 * 2 = 1,696

0,696 * 2 = 1,392

0,392 * 2 = 0,784

Таким образом 0,11610 ? 0,00011101102

Получим: 206,11610 ? 11001110,00011101102

Заключение

Подводя итог исследования темы, следует отметить, что история систем счисления восходит к тому далекому прошлому, когда человек для изображения требуемого числа пользовался насечками на палке или ссыпал камешки в мешочек.

Человек, совершенствуя искусство счета, проделал огромный путь - от засечек на дереве до современного компьютера. Все достижения вычислительной культуры человека берут свое начало в единичной системе. Имеются достаточно обоснованные предположения о том, что сначала человек изобрел числа, а лишь затем другие письменные знаки. Эволюция единичной системы счисления постепенно привела к идее пересчитывания группами, а после к возникновению цифр и чисел, к позиционной цифровой их записи.

Используется ли единичная система в наше время? Да. Малыши используют при счете пальцы рук, первоклассники осваивают арифметические операции при помощи счетных палочек.

В ходе своего развития человечество стремилось совершенствовать запись чисел. У разных народов в разное время употреблялись различные системы счисления. Непозиционные системы счисления не получили широкого распространения в современном обществе. История распорядилась так, что человечество в своей практике использует в основном только одну непозиционную систему счисления - римскую. Очевидными являются неудобства записи чисел в подобных системах. При работе с большими числами необходимо придумывать новые символы (цифры), причем этот процесс может продолжаться до бесконечности. Кроме того правила формирования чисел достаточно сложны. Такая проблема у большинства позиционных систем счисления отсутствует. Тем не менее, запись чисел в римской системе находит ограниченное применение в настоящее время при нумерации разделов в книгах, веков в исторических трудах, при оформлении циферблатов часов и т.д.

Позиционные системы счисления - результат длительного исторического развития непозиционных систем счисления. Хотя все позиционные системы счисления являются равноправными, в повседневной жизни мы обычно пользуемся десятичной системой. Причины, по которым именно десятичная система оказалась общепринятой, совсем не математического характера. Очевидно, что эту систему мы предпочитаем остальным позиционным системам счисления лишь потому, что количество пальцев на руках у человека равно десяти, а именно пальцы первоначально служили основным "инструментом" для счета. По пальцам удобно считать от одного до десяти. Сосчитав до десяти, т.е. использовав до конца возможности нашего природного "счетного аппарата", естественно принять число 10 за новую более крупную единицу (единицу следующего разряда). Таким образом, именно счет по пальцам рук положил начало этой системе, которая кажется нам сейчас чем-то само собой разумеющимся. Основные арифметические операции в десятичной системе усваиваются нами еще в детстве. В повседневной практике мы оперируем ими подсознательно. По этой причине многие люди даже не догадываются, что существуют другие системы счисления.

Но десятичная система счисления далеко не сразу заняла господствующее положение, которое она имеет сейчас. В разные исторические периоды многие народы пользовались системами счисления, отличными от десятичной. Многочисленные следы этих систем счисления сохранились до наших дней и в языках многих народов, и в принятых денежных системах, и в системах мер.

О широком распространении двенадцатеричной системы говорит нам тот факт, что сервизы обычно составляют на 12 столовых приборов (чашек, тарелок, вилок, ножей и т.д.), из сказок мы знаем о двенадцатиглавом змее и т.д. Все это свидетельствует о древнем происхождении этой системы. В нашем языке сохранились также следы других систем счисления: "сорок сороков церквей", "тридцать три богатыря" и т.д.

Работая над данной темой, я узнала для себя очень много интересного, разобралась с принципом записи чисел в различных системах счисления и переводом из одной системы в другую.

В заключение хочу добавить, что необходимость возникновения счета много веков назад дала начало величайшей из наук - математике, которой мы обязаны всеми достижениями человечества.

Список литературы

1. Босова Л. Л. Информатика: Учебник для 6 класса / Л. Л. Босова. -- 3-е изд., испр. и доп. -- М.: БИНОМ. Лаборатория знаний, 2005. -- 208 с.: ил.

2. Системы счисления, классификации. Десятичная, двоичная, пересчет. Примеры других систем.

Приложение 1

Рисунок 1 Древнеегипетская система. Число 345

Рисунок 2 Вавилонская система. Число 32

Рисунок 3 Вавилонская система. Число 212

Рисунок 4 Вавилонская система. Цифра 0

Рисунок 5 Славянская система. 1000 (тысяча)

Рисунок 6 Славянская система. Миллион (тьма)

Рисунок 7 Греческая система. Число 15,3444

Приложение 2

Таблица 1 Древнеегипетская система счисления

Единицы

Десятки

Сотни

Тысячи

Десятки тысяч

Сотни тысяч

Миллионы

Таблица 2 Славянская система счисления

Аз

1

И

10

Рцы

100

Веди

2

Како

20

Слово

200

Глаголь

3

Люди

30

Твёрдо 300

Добро

4

Мыслете

40

Ук

400

Есть

5

Наш

50

Ферт

500

Зело

6

Кси

60

Хер

600

Земля

7

Он

70

Пси

700

Иже

8

Покой

80

О

800

Фита

9

Червь

90

Цы

900

Таблица 3 Греческая система счисления

Альфа

1

Йота

10

Ро

100

Бета

2

Каппа

20

Сигма

200

Гамма

3

Ламбда

30

Тау 300

Дельта

4

Мю

40

Ипсилон

400

Эпсилон

5

Ню

50

Фи

500

Вау

6

Кси

60

Хи

600

Дзета

7

Омикрон

70

Пси

700

Эта

8

Пи

80

Омега

800

Тета

9

Коппа

90

Сампи

900

Таблица 4 Двоичное сложение

0

0

1

1

+

+

+

+

0

1

0

1

=

=

=

=

0

1

1

10

Таблица 5 Двоичное вычитание

0

1

1

10

-

-

-

-

0

1

0

1

=

=

=

=

0

1

1

1

Таблица 6 Перевод 10110112 в десятичную систему

0*2+ 1 = 1

1*2 + 0 = 2

2*2 + 1 = 5

5*2 + 1 = 11

11*2 + 0 = 22

22*2 + 1 = 45

45*2 + 1 = 91

Таблица 7 Перевод числа 19 в двоичную систему

19 /2 = 9 с остатком 1

9 /2 = 4 c остатком 1

4 /2 = 2 без остатка 0

2 /2 = 1 без остатка 0

1 /2 = 0 с остатком 1

Таблица 8 Перевод 20610,116 в двоичную систему

0,116 * 2 = 0,232

0,232 * 2 = 0,464

0,464 * 2 = 0,928

0,928 * 2 = 1,856

0,856 * 2 = 1,712

0,712 * 2 = 1,424

0,424 * 2 = 0,848

0,848 * 2 = 1,696

0,696 * 2 = 1,392

0,392 * 2 = 0,784

Размещено на Allbest.ru

...

Подобные документы

  • История развития систем счисления. Непозиционная, позиционная и десятичная система счисления. Использование систем счисления в компьютерной технике и информационных технологиях. Двоичное кодирование информации в компьютере. Построение двоичных кодов.

    курсовая работа [5,3 M], добавлен 21.06.2010

  • Исследование истории систем счисления. Описание единичной и двоичной систем счисления, древнегреческой, славянской, римской и вавилонской поместной нумерации. Анализ двоичного кодирования в компьютере. Перевод чисел из одной системы счисления в другую.

    контрольная работа [892,8 K], добавлен 04.11.2013

  • Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника и наука вообще. История цифр. Числа и счисление. Способы запоминания чисел.

    реферат [42,5 K], добавлен 13.04.2008

  • Понятие системы счисления. История развития систем счисления. Понятие натурального числа, порядковые отношения. Особенности десятичной системы счисления. Общие вопросы изучения нумерации целых неотрицательных чисел в начальном курсе математики.

    курсовая работа [46,8 K], добавлен 29.04.2017

  • Система счисления, применяемая в современной математике, используемые в ЭВМ. Запись чисел с помощью римских цифр. Перевод десятичных чисел в другие системы счисления. Перевод дробных и смешанных двоичных чисел. Арифметика в позиционных системах счисления.

    реферат [75,2 K], добавлен 09.07.2009

  • Понятие и математическое содержание систем счисления, их разновидности и сферы применения. Отличительные признаки и особенности позиционных и непозиционных, двоичных и десятичных систем счисления. Порядок перевода чисел из одной системы в другую.

    презентация [419,8 K], добавлен 10.11.2010

  • Определения системы счисления, числа, цифры, алфавита. Типы систем счисления. Плюсы и минусы двоичных кодов. Перевод шестнадцатеричной системы в восьмеричную и разбитие ее на тетрады и триады. Решение задачи Баше методом троичной уравновешенной системы.

    презентация [713,4 K], добавлен 20.06.2011

  • Математическая теория чисел. Понятие систем счисления. Применения двоичной системы счисления. Компьютерная техника и информационные технологии. Алфавитное неравномерное двоичное кодирование. Достоинства и недостатки двоичной системы счисления.

    реферат [459,5 K], добавлен 25.12.2014

  • Совокупность приемов и правил записи и чтения чисел. Определение понятий: система счисления, цифра, число, разряд. Классификация и определение основания систем счисления. Разница между числом и цифрой, позиционной и непозиционной системами счисления.

    презентация [1,1 M], добавлен 15.04.2015

  • Сущность двоичной, восьмеричной и шестнадцатиричной систем счисления, их отличительные черты и взаимосвязь. Пример алгоритмов перевода чисел из одной системы в другую. Составление таблицы истинности и логической схемы для заданных логических функций.

    презентация [128,9 K], добавлен 12.01.2014

  • Ознакомление с записью чисел в алфавитной системе счисления. Особенности установления числовых значений букв у славянских народов. Рассмотрение записи больших чисел в славянской системе счисления. Обозначение "тем", "легионов", "леордов" и "колод".

    презентация [1,0 M], добавлен 30.09.2012

  • История возникновения и развития арабских цифр, особенности их написания, удобство по сравнению с другими системами. Знакомство с цифрами разных народов: системой счисления Древнего Рима, китайскими, деванагари и их развитием от древности, до наших дней.

    реферат [276,4 K], добавлен 22.01.2011

  • Как люди научились считать, возникновение цифр, чисел и систем счисления. Таблица умножения на "пальцах": методика умножения для чисел 9 и 8. Примеры быстрого счета. Способы умножения двузначного числа на 11, 111, 1111 и т.д. и трехзначного числа на 999.

    курсовая работа [66,8 K], добавлен 22.10.2011

  • Вавилонская система счисления, таблицы обратных чисел и математика для исследования движений планет. Египетский календарь и введение символа для обозначения нуля у майя. Греческая математика, Индия и арабы. Современная математика и математический анализ.

    реферат [49,7 K], добавлен 27.04.2009

  • Из истории десятичных и обыкновенных дробей. Действия над десятичными дробями. Сложение (вычитание) десятичных дробей. Умножение десятичных дробей. Деление десятичных дробей.

    реферат [8,3 K], добавлен 29.05.2006

  • Приближение действительных чисел конечными десятичными дробями. Действия над комплексными числами. Свойства функции и способы ее задания. Тригонометрические функции числового аргумента. Частные случаи тригонометрических уравнений, аксиомы стереометрии.

    шпаргалка [2,2 M], добавлен 29.06.2010

  • Комплексные числа и комплексные равенства, их алгебраическая и тригонометрическая формы. Арифметические действия над комплексными числами. Целые функции (многочлены) и их свойства. Решение алгебраических уравнений на множестве комплексных чисел.

    лекция [464,6 K], добавлен 12.06.2011

  • Перевод мер угла в градусной системе. Соотношения между градусной и часовой системами счисления. Перевод меры угла из классического вида в секунды, в десятичный и наоборот. Алгоритм (правила) и методы его перевода. Перевод мер угла в часовой системе.

    контрольная работа [50,1 K], добавлен 13.05.2009

  • Система линейных уравнений. Матричное решение системы уравнений. Геометрический смысл операций с комплексными числами. Элементы аналитической геометрии в пространстве. Классификация функций. Основные элементарные функции. Раскрытие неопределенностей.

    шпаргалка [1,1 M], добавлен 12.01.2009

  • Задачи на логику: имена и отчества, вычисление веса, ребусы, треугольники, скорость движения, количество детей в семье, арифметические действия над числами, спички, игральные кости, количество дней в месяцах, вычисление возраста родственников, время.

    презентация [2,0 M], добавлен 21.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.