Вычисление интегралов

Описаны примеры решений задач: Расставить пределы интегрирования двумя способами в двойном интеграле. Вычислить двойной, тройной интеграл. Найти площадь области, ограниченной кривыми и объем тела, ограниченного поверхностями. Вычисления по формуле Грина.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 24.04.2014
Размер файла 197,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Вариант 11

1. Расставить пределы интегрирования двумя способами в двойном интеграле

в декартовых координатах для области

2. Вычислить двойной интеграл:

3. Вычислить двойной интеграл:

4. Вычислить тройной интеграл:

5. Найти площадь области, ограниченной кривыми:

6. Найти объем тела, ограниченного поверхностями: , ,

, .

7. Вычислить: , где дуга кривой , .

8. Вычислить непосредственно и с помощью формулы Грина: , где квадрат ,,,.

9. Проверить, является ли данное выражение полным дифференциалом. Если да, то найти .

10. Вычислите поток векторного поля через внешнюю сторону границы области, ограниченной поверхностями и ().Решить задачу непосредственно и по формуле Остроградского - Гаусса.

11. Найдите циркуляцию векторного поля по линии пересечения цилиндра и плоскости . Решить задачу непосредственно и по формуле Стокса. интеграл задача решение

12. Найти дивергенцию и ротор векторного поля ; выяснить, является ли данное поле потенциальным или соленоидальным; если да, то найти соответственно его скалярный или векторный потенциал и сделать проверку потенциала:

Решение

1. Нарисуем область D:

Очевидно, что . Тогда:

.

Введем функцию:

Тогда

2.

Область D ограничена снизу двумя прямыми, а сверху функцией . Прямые пересекаются в точке (1,-1) под прямым углом. Прямая пересекается с функцией в точке (4,2). Тогда:

.

3.

Нарисуем область D: видно, что мы имеем часть, расположенную между двумя прямыми и дугами двух окружностей. Для решения переходим к полярным координатам. Предварительно найдем точки пересечения: (4/5, 8/5), (8/5,16/5),(4,4), (2,2). Угол .

Итак, после преобразования мы получим: . Тогда:

.

4.

Очевидно, . Имеем часть параболоида вращения, ограниченного сверху плоскостью z=2. Для вычисления интеграла перейдем в цилиндрические координаты:

.

5. В случае a=0 первое уравнение дает оси координат, а второе прямую y=-x, т.е. нет ограниченной фигуры. Поэтому считаем, что . Тогда имеем гиперболу и прямую: , причем если a>0, то область лежит выше гиперболы (прямая ограничивает область сверху), иначе - ниже. В итоге получаем:

.

6. Перепишем поверхности в виде Итак, имеем два параболических цилиндра (один вложен во второй, общая ось Oz), отрезанных плоскостями. Очевидно, . Область симметрична относительно плоскости Oyz, то есть достаточно рассмотреть лишь половину области (при ). Тогда получаем:

.

7. , где дуга кривой , .

Кривая задана параметрически, вычисляем КРИ-1 по формуле:

8. Вычислим интеграл сначала по формуле Грина:

Вычислим непосредственно.

AB: y=1-x, dy = - dx:

BC: y=x+1, dy = dx:

CD: y=-x-1, dy=-dx:

DA: y=x-1, dy=dx:

Просуммировав, получим искомый результат.

9. .

Проверим условие на полный дифференциал:

. Найдем U(x,y).

.

10. , внешняя сторона границы области, ограниченная поверхностями и ().

Имеем часть конуса, отсеченную сверху и снизу сферой. Найдем по формуле Остроградского-Гаусса. Итак имеем:

Вычислим каждый интеграл по отдельности.

Последний интеграл, аналогично, равен 0. Ответ 0.

11. , по линии пересечения цилиндра и плоскости .

Найдем по формуле Стокса: .

. Заданный контур - часть плоскости y+z = 0, ограниченная цилиндром. Из уравнения плоскости определяем направляющие косинусы: . Тогда:

12. . Найдем дивергенцию и ротор.


Следовательно, поле потенциальное. Найдем потенциал.

Размещено на Allbest.ru

...

Подобные документы

  • Поиск площади фигуры, ограниченной графиками функций с помощью двойного интеграла. Получение вращением объема тела вокруг оси ОХ фигуры, ограниченной указанными линиями. Пределы интегрирования в двойном интеграле по области, ограниченной линиями.

    контрольная работа [166,9 K], добавлен 28.03.2014

  • Рассмотрение основных способов решения задач на вычисление неопределенных и определенных интегралов по формулам Ньютона-Лейбница и Симпсона. Ознакомление с примерами нахождения области, ограниченной линиями, и объема тела, ограниченного поверхностями.

    контрольная работа [194,2 K], добавлен 28.03.2014

  • Формула замены переменной в двойном интеграле. Понятие якобиана перехода и особенности его расчета. Анализ примеров вычисления двойного интеграла с ограниченной линиями (осью и верхней полуокружностью) интегральной областью. Введение новых переменных.

    презентация [107,2 K], добавлен 17.09.2013

  • Рассмотрение задач численного интегрирования по простейшим формулам. Понятие тройных интегралов и их применение для вычисления объема, массы, площади, моментов инерции, статистических моментов и координат центра масс тела на конкретных примерах.

    курсовая работа [348,5 K], добавлен 17.12.2013

  • Изучение теории кратных интегралов. Исследование понятия "двойной и тройной интеграл". Применение кратных интегралов для вычисления объема, массы, площади, моментов инерции, статистических моментов и координат центра масс тела на конкретных примерах.

    курсовая работа [469,0 K], добавлен 13.12.2012

  • Расчет неопределенных интегралов по частям и по формуле Ньютона-Лейбница. Вычисление несобственного интеграла или доказательство его расходимости. Расчет площади фигуры, ограниченной кардиоидой. Расстановка пределов двумя альтернативными способами.

    контрольная работа [251,2 K], добавлен 28.03.2014

  • Изменение порядка интегрирования функции. Расчет площади фигуры, ограниченной графиками функций. Поиск предела интегрирования. Определение производной скалярного поля в точке по направлению вектора. Поиск объема тела, ограниченного поверхностями.

    контрольная работа [249,8 K], добавлен 28.03.2014

  • Вычисление двойного интеграла в прямоугольных координатах. Замена переменных в двойном интеграле. Аналог формул прямоугольников и формулы трапеции. Теорема существования двойного интеграла, его геометрический и физический смысл и основные свойства.

    курсовая работа [1,3 M], добавлен 13.02.2013

  • Понятие определённого интеграла, расчет площади, объёма тела и длины дуги, статического момента и центра тяжести кривой. Вычисление площади в случае прямоугольной криволинейной области. Применение криволинейного, поверхностного и тройного интегралов.

    курсовая работа [2,1 M], добавлен 19.05.2011

  • Разложение функции в ряд Фурье, поиск коэффициентов. Изменение порядка интегрирования, его предел. Расчет площади фигуры, ограниченной графиками функций, с помощью двойного интеграла, объема тела, ограниченного поверхностями, с помощью тройного интеграла.

    контрольная работа [111,8 K], добавлен 28.03.2014

  • Изменение порядка интегрирования функции. Поиск предела интегрирования. Расчет площади фигуры, ограниченной графиками функций. Поиск объема тела, ограниченного поверхностями. Определение производной скалярного поля в точке по направлению вектора.

    контрольная работа [233,2 K], добавлен 28.03.2014

  • Поиск общего интеграла дифференциального уравнения. Расстановка пределов интегрирования. Координаты вершины параболы. Объем тела, ограниченного поверхностями. Вычисление криволинейного интеграла. Полный дифференциал функции. Вычисление дуги цепной линии.

    контрольная работа [298,1 K], добавлен 28.03.2014

  • Вычисление относительной и абсолютной погрешности табличных определённых интегралов. Приближенные методы вычисления определённых интегралов: метод прямоугольников, трапеций, парабол (метод Симпсона). Оценка точности вычисления "не берущихся" интегралов.

    курсовая работа [187,8 K], добавлен 18.05.2019

  • Криволинейный интеграл первого и второго рода. Площадь области, ограниченной замкнутой кривой. Объем тела, образованного вращением замкнутой кривой. Центр масс и моменты инерции кривой. Магнитное поле вокруг проводника с током. Сущность закона Фарадея.

    реферат [1,4 M], добавлен 09.01.2012

  • Способы вычисления интегралов. Формулы и проверка неопределенного интеграла. Площадь криволинейной трапеции. Неопределенный, определенный и сложный интеграл. Основные применения интегралов. Геометрический смысл определенного и неопределенного интегралов.

    презентация [1,2 M], добавлен 15.01.2014

  • Особенности вычисления объемов тел, ограниченных поверхностями, с применением геометрического смысла двойного интеграла. Определение площадей плоских фигур, ограниченных линиями, с использованием метода интегрирования в курсе математического анализа.

    презентация [67,9 K], добавлен 17.09.2013

  • Понятие и геометрический смысл определенного интеграла, его свойства. Формула Ньютона–Лейбница. Замена переменной в определенном интеграле. Интегрирование по частям. Объем тела вращения. Несобственные интегралы с бесконечными пределами интегрирования.

    курс лекций [514,0 K], добавлен 31.05.2010

  • Криволинейный интеграл первого рода. Двойной интеграл в декартовой и полярной системе координат. Интеграл по поверхности (первого рода). Приложение определенного интеграла в геометрии: площадь плоской фигуры и цилиндрической поверхности, объем тела.

    методичка [517,1 K], добавлен 27.01.2012

  • Понятие двойного интеграла, условия его существования, свойства и методы вычисления: сведение двойного интеграла к повторному для прямоугольной и криволинейной областей; двойной интеграл в полярных координатах; замена переменных; вычисление объемов тел.

    контрольная работа [321,9 K], добавлен 21.07.2013

  • Связь с помощью формулы Грина криволинейного интеграла по замкнутому контуру с двойным интегралом по области, ограниченного этим контуром. Преобразование двойного интеграла по контуру, обходимого в положительном направлении. Доказательство теоремы.

    презентация [44,7 K], добавлен 17.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.