Круг идей П.Л. Чебышева

Описание алгебраических и тригонометрических многочленов на некотором интервале. Формулирование для них теоремы Чебышева об аппроксимации функций. Рассмотрение произвольной, непрерывной на [a,b] вещественной функции и обобщенной теоремы Валле-Пуссена.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 06.05.2014
Размер файла 37,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Круг идей П.Л. Чебышева

Пусть даны замкнутый (конечный или бесконечный) интервал [a,b] числовой оси и две вещественные непрерывные в [a,b] функции f(x) и S(x). Составим выражение:

(*),

где m и n заданы и поставим задачу найти вещественные параметры p0,p1...pm; q0,q1...qn так, чтобы уклонение Q(x) от f(x) было наименьшим.

В частном случае, когда S(x)=1, m=0 и интервал [a,b] конечен, поставленная задача переходит в задачу о наилучшем приближении в пространстве С заданной функции с помощью многочлена степени n.

Будем полагать, что m=n-k, кроме того, если интервалом [a,b] является вся числовая ось, мы будем предполагать, что и будем рассматривать только те функции, для которых , m условимся считать чётным.

тригонометрический многочлен чебышев аппроксимация

1. Обобщённая теорема Валле-Пуссена

Если многочлены ; , где и , , не имеют общего делителя, а выражение в интервале [a,b] остаётся конечным и если разность f(x)-R(x) принимает в последовательных точках x1<x2<...<xn интервала [a,b], отличные от значения с чередующимися знаками, N=m+n-d+2, , то для каждой функции имеет место неравенство: , где . Это же неравенство имеет место, если R(x)=0 и N=n+2.

Значение этой теоремы состоит в том, что она даёт возможность получить для погрешности наилучшего приближения некоторую оценку снизу.

Теорема существования.

Среди функций Q(x) существует по крайней мере одна, для которой HQ имеет наименьшее значение.

Т.о., пусть Н- есть нижняя грань множества всех HQ. По определению, следовательно, существует бесконечная последовательность функций Qi(x), для которой .

2. Теорема Чебышева

Функция Р(х), которая из всех функций вида Q(x) наименее уклоняется в [a,b] от функции f(x), единственна.

Эта функция вполне характеризуется таким своим свойством, если она приведена к виду , и , и дробь несократима, то число N последовательных точек интервала [a,b], в котором разность f(x)-P(x) принимает с чередующимися знаками значение Нр, не менее, чем m+n-d+2, где d=, а если P(x)=0, то .

Теорема Чебышева показывает, что существует единственная функция P(x), дающая наилучшее приближение к данной функции f(x) (т.е. наименее отклоняется от f(x)) в данном нормированном пространстве.

Случай аппроксимации многочленами

Особенно важным является частный случай, когда S(x)=1, m=0 и интервал [a,b] конечен. В этом случае мы получаем теорему:

многочлен n-й степени P(x), который наименее уклоняется (в метрике пространства С) от заданной непрерывной функции f(x), единственен и вполне характеризуется тем, что число последовательных точек интервала [a,b], в которых разность f(x)-P(x) принимает с чередующимися знаками значение не меньше, чем n+2.

3. Переход к периодическим функциям

Допустим, что - есть непрерывная периодическая функция с периодом , которую нужно наилучшим образом аппроксимировать на всей оси при помощи тригонометрической суммы: порядка n. Сделаем замену переменной так, что интервалу будет соответствовать интервал .

Т.к. и так как есть многочлены степени к от , то после преобразования мы получим . Следовательно, наша задача сводится к наилучшему (в интервале ) приближению функции F(x)=f() при помощи выражения вида: . Выражение W2n(x) можно рассматривать как частный случай выражения Q(x), если положить m=0, . Легко видеть, что общие теоремы применимы, и теорема Чебышева гласит:

тригонометрическая сумма n-го порядка , которая наименее уклоняется на всей оси от заданной непрерывной периодической функции, единственна и вполне характеризуется тем, что число последовательных точек интервала (или какого- нибудь открытого полуинтервала длиной 2), в которых разность принимает с чередующимися знаками значение max|| не меньше, чем 2n+2.

Одну и ту же функцию f(x) в (0,) можно разложить в ряд по sin, по cos, по sin и cos, т.к. если f(x) определена на (0,), то доопределить f(x) на можно бесконечным множеством способов. Следовательно, задача о разложении f(x) в ряд имеет бесчисленное множество решений. Из всех этих решений выделяются 2:

Если f(x) доопределить чётным образом, то получим ряд только по cos кратных дуг;

Если f(x) доопределить нечётным образом, то получим ряд только по sin.

Пример: f(x)=x на

,

;

;

Для sin аналогично, только f(x)- нечётная.

4. Обобщение теоремы Чебышева

Мы рассмотрели алгебраические и тригонометрические многочлены на некотором интервале и сформулировали для них теорему Чебышева об аппроксимации этих функций. Теперь рассмотрим произвольную, непрерывную на [a,b] вещественную функцию.

Рассмотрим систему вещественных непрерывных функций f1(x),f2(x)...fn(x) в конечном или бесконечном интервале [a,b], которая удовлетворяет условиям Хаара: единственность полинома наименьшего уклонения для каждой функции f(P) будет тогда и только тогда, когда каждый полином F(P,x)0 имеет в ограниченном замкнутом точечном множестве не более n-1 различных нулей.

Такую систему называют системой Чебышева относительно интервала [a,b].

Лемма: Пусть x1,x2...xn-1 произвольно взятые различные точки из интервала [a,b]. В таком случае существует (и с точностью до постоянного множителя только 1) нетривиальный полином , который имеет своими нулями следующие точки:

Других нулей у этого полинома нет, и, если т. xk лежит внутри [a,b], то при переходе через неё полином F(x,) меняет знак.

Обобщение: Если S- есть система Чебышева относительно интервала [a,b], а f(x)- произвольная непрерывная в [a,b] вещественная функция, то полином F(x,), который в метрике С наименее уклоняется в [a,b] от f(x) вполне определяется тем, что разность принимает с чередующимися знаками своё максимальное значение по крайней мере в n+1 последовательных точках интервала [a,b].

Теперь мы можем рассматривать функции в произвольных нормированных пространствах.

Размещено на Allbest.ru

...

Подобные документы

  • Основы теории многочленов от одной переменной. Определение и простейшие свойства многочленов Чебышева. Основные теоремы о многочленах Чебышева. Формальная производная многочлена. Рациональные корни нормированного многочлена с целыми коэффициентами.

    курсовая работа [1,2 M], добавлен 04.07.2015

  • Роль многочленов Чебышева в теории приближений и их использование в качестве узлов при интерполяции алгебраическими многочленами. Преимущества разложения функции по полиномам Чебышева. Разработка программы численного расчета решения подобной задачи.

    контрольная работа [184,2 K], добавлен 13.05.2014

  • Основные свойства многочленов Чебышева - двух последовательностей ортогональных многочленов, их роль в теории приближений. Способы определения, явные формулы. Многочлен Чебышева на отрезке. Случай произвольного отрезка. Разработка программной реализации.

    курсовая работа [391,8 K], добавлен 19.12.2012

  • Определение и общие свойства ортогональных функций (многочленов). Рекуррентная формула и формула Кристоффеля-Дарбу. Элементарные свойства нулей, их плотность. Сущность первого и второго рода многочленов Чебышева. Нули многочленов и отклонение от них.

    курсовая работа [2,5 M], добавлен 30.06.2011

  • Преобразование коэффициентов полиномов Чебышева. Функции, применяемые в численном анализе. Интерполяция многочленами, метод аппроксимации - сплайн-аппроксимация, ее отличия от полиномиальной аппроксимации Лагранжем и Ньютоном. Метод наименьших квадратов.

    реферат [21,5 K], добавлен 27.01.2011

  • Математический анализ и операционное исчисление. Обращение преобразования с помощью многочленов, ортогональных на промежутке. Интегральное преобразования Лапласа с помощью смещенных многочленов Лежандра и многочленов Чебышева первого рода.

    реферат [503,6 K], добавлен 10.02.2011

  • Основные формулы и алгебраические свойства. Применение многочленов Чебышева-Эрмита в квантовой механике. Определение потенциальной энергии. Ортонормированный многочлен Чебышева-Эрмита. Уравнение Шрёдингера в одномерном случае. Коэффициенты разложения.

    курсовая работа [459,1 K], добавлен 21.11.2014

  • Представление доказательства неравенства Чебышева. Формулирование закона больших чисел. Приведение примера нахождения математического ожидания и дисперсии для равномерно распределенной случайной величины. Рассмотрение содержания теоремы Бернулли.

    презентация [65,7 K], добавлен 01.11.2013

  • Рекурсивное, тригонометрическое определение и свойства многочленов Чебышёва. Сущность теоремы Е.И. Золотарёва-А.Н. Коркина. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей. Обобщение метода Грамма-Шарлье.

    курсовая работа [1,1 M], добавлен 11.01.2011

  • Основные свойства непрерывной функции. Теоремы о корне, промежуточном значении и об ограниченности непрерывной функции, их доказательство. Непрерывная на отрезке функция достигает максимума и минимума. Графическое представление корней уравнения.

    лекция [497,0 K], добавлен 13.02.2009

  • Применение второго замечательного предела для раскрытия неопределенности. Точки разрыва непрерывной функции 1-го и 2-го рода. Условия ее непрерывности в точке, интервале и на отрезке. Теоремы Вейерштрасса и Больцано-Коши. Обращение функции в ноль.

    презентация [222,8 K], добавлен 20.03.2014

  • Вклад А. Колмогорова в теорию вероятностей: публикации по проблемам дескриптивной и метрической теории функций; его глубокий интерес к философии математики. Разработка метода моментов Чебышевым. Исправление учеником Чебышева Марковым его теоремы.

    презентация [424,5 K], добавлен 28.04.2013

  • Теория вероятностей и закономерности массовых случайных явлений. Неравенство и теорема Чебышева. Числовые характеристики случайной величины. Плотность распределения и преобразование Фурье. Характеристическая функция гауссовской случайной величины.

    реферат [56,1 K], добавлен 24.01.2011

  • Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.

    творческая работа [27,7 K], добавлен 17.10.2009

  • Среднее арифметическое наблюдаемых значений, служащее оценкой для математического ожидания. Состоятельность оценки, следующая из теоремы Чебышева. Условия возникновения систематической ошибки, ликвидация смещения. Точечные параметры оценки величин.

    презентация [62,3 K], добавлен 01.11.2013

  • Выполнение доказательства теорем Пифагора, Ферма и гипотезы Биля методом параметрических уравнений в сочетании с методом замены переменных. Уравнение теоремы Ферма как частный вариант уравнения гипотезы Биля, а уравнение теоремы Ферма – теоремы Пифагора.

    творческая работа [64,8 K], добавлен 20.05.2009

  • Биографические данные Пафнутия Львовича Чебышева. Детские годы ученого, получение образования. Переезд в Петербург и защита в Петербургском университете диссертации. Наибольшее число работ Чебышева посвящено математическому анализу. Теория механизмов.

    реферат [17,8 K], добавлен 22.12.2009

  • Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.

    научная работа [31,1 K], добавлен 18.01.2010

  • Теорема о представлении дзета-функции Дедекинда произведением L-рядов Дирихле, ее доказательство в виде произведения L-функций в разветвленном и неразветвленном случаях. Приложение теоремы: выведение функционального уравнения дзета-функции Дедекинда.

    курсовая работа [65,6 K], добавлен 15.06.2011

  • Многочлены Чебышева. Многочлены равномерных приближений. Экономизация степенных рядов. Свойства многочлена Чебышева. Интерполяция по Чебышевским узлам. Многочлены равномерных приближений. Теорема Вейерштрасса. Кусочно-квадратичная аппроксимация.

    курс лекций [175,3 K], добавлен 06.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.