Конечные автоматы

Переработка информации с помощью конечных автоматов. Детерминированные конечные автоматы и автоматные языки. Характеристика свойств замкнутости класса автоматных языков. Регулярные выражения как средство для построения алгебраических описаний языков.

Рубрика Математика
Предмет Дискретная математика
Вид курс лекций
Язык русский
Прислал(а) М.И. Дехтярь
Дата добавления 20.05.2014
Размер файла 402,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Описание абстрактных, структурных и частичных конечных автоматов. Работа синхронных конечных автоматов, содержащих различные типы триггеров, определение сигналов их возбуждения. Пример канонического метода структурного синтеза. Схема дверного замка.

    учебное пособие [19,6 M], добавлен 07.06.2009

  • Характеристика и изучение замкнутости класса всех конечных сверхразрешимых групп относительно подгрупп, фактор-групп и прямых произведений. Исследование свойств подгрупп конечной сверхразрешимой группы. Обзор свойств сверхразхрешимых групп в виде лемм.

    курсовая работа [260,7 K], добавлен 06.06.2012

  • Этапы развития логики. Имена ученых, внесших существенный вклад в развитие логики. Ключевые понятия монадической логики второго порядка. Язык логики предикатов. Автоматы Бучи: подход с точки зрения автоматов и полугрупп. Автоматы и бесконечные слова.

    курсовая работа [207,1 K], добавлен 26.03.2012

  • Изучение конструкции и простейших свойств конечных полей, степень расширения поля разложения. Определение и свойства фундаментальной группы топологического пространства. Способ построения клеточного комплекса путем последовательного приклеивания клеток.

    контрольная работа [926,4 K], добавлен 26.12.2010

  • Конечные группы со сверхразрешимыми подгруппами четного и непримарного индекса. Неразрешимые группы с заданными подгруппами непримарного индекса. Классификация и строение конечных минимальных несверхразрешимых групп. Доказательство теорем и лемм.

    курсовая работа [427,2 K], добавлен 18.09.2009

  • Понятие и виды бинарной алгебраической операции. Определения, примеры и общие свойства -перестановочных подгрупп. Характеристика и методика решения конечных групп с заданными -перестановочными подгруппами. Доказательство p-разрешимости конечных групп.

    курсовая работа [1,1 M], добавлен 22.09.2009

  • Неразрешимые конечные группы с нильпотентными добавлениями к несверхразрешимым подгруппам. Нормальные подгруппы конечных-обособленных груп. Факторизуемые группы с разрешимыми факторами нечетных индексов. Произведения 2-разложимых групп специальных видов.

    курсовая работа [546,1 K], добавлен 26.09.2009

  • Характеристика и определение общих свойств слабо нормальных подгрупп и их конечных групп. Доказательство новых критериев принадлежности группы насыщенной формации. Критерии разрешимости и метанильпотентности групп в терминах слабо нормальных подгрупп.

    курсовая работа [176,0 K], добавлен 02.03.2010

  • Рассмотрение особенностей метода построения полного проверяющего теста для недетерминированных автоматов относительно неразделимости для модели "черного ящика" и разработка предложений по его модификации. Исследование условий усечения дерева преемников.

    курсовая работа [1,3 M], добавлен 20.08.2010

  • Конструкции и свойства конечных полей. Понятие степени расширения, определенность поля разложения, примитивного элемента, строение конечной мультипликативной подгруппы поля. Составление программы, которая позволяет проверить функцию на примитивность.

    курсовая работа [19,2 K], добавлен 18.12.2011

  • Интерполяционная схема Эйткина. Связь конечных разностей и производных. Распространение ошибки исходных данных при вычислении конечные разности. Свойства разделенной разности. Интерполяционная формула Ньютона для не равноотстоящих узлов. Полином Лагранжа.

    лекция [92,3 K], добавлен 06.03.2009

  • Особенности решения задач Диофантовой "Арифметики", которые решаются с помощью алгебраических уравнений или системы алгебраических уравнений с целыми коэффициентами. Характеристика великой теоремы Ферма, анализ и методы приминения алгоритма Евклида.

    реферат [36,8 K], добавлен 03.03.2010

  • Метод Зейделя как модификация метода простой итерации. Особенности решения систем линейных алгебраических уравнений. Анализ способов построения графика функций. Основное назначение формул Симпсона. Характеристика модифицированного метода Эйлера.

    контрольная работа [191,3 K], добавлен 30.01.2014

  • Решение линейной краевой задачи методом конечных разностей (методом сеток). Замена области непрерывного изменения аргументов дискретным множеством узлов (сеток). Сведение линейной краевой задачи к системе линейных алгебраических уравнений (сеточных).

    лекция [463,7 K], добавлен 28.06.2009

  • Наименование разрабатываемой модели, основание для разработки. Состав и параметры аппаратного обеспечения системы. Выбор и обоснование средств реализации. Построение, расчет, разбиение модели на конечные элементы. Графическое представление решения.

    курсовая работа [674,0 K], добавлен 30.09.2010

  • Определение понятия модели, необходимость их применения в науке и повседневной жизни. Характеристика методов материального и идеального моделирования. Классификация математических моделей (детерминированные, стохастические), этапы процесса их построения.

    реферат [28,1 K], добавлен 20.08.2015

  • Исследование существования примарных нормальных подгрупп в бипримарных группах. Конечные бипримарные группы, разрешимые группы порядка. Порядки силовских подгрупп общей линейной группы. Доказательство лемм и теорем с использованием бинома Ньютона.

    курсовая работа [527,0 K], добавлен 26.09.2009

  • Характеристика видов математических уравнений - алгебраических и трансцендентных, их сравнение и отличительные особенности. Возможности метода замены неизвестного при решении алгебраических уравнений, применение в стандартных и нестандартных ситуациях.

    контрольная работа [246,3 K], добавлен 21.09.2010

  • Понятие множества и его элементов. Обозначение принадлежности элемента множеству. Конечные и бесконечные множества. Строгое и нестрогое включение. Способы задания множеств. Равенство множеств и двухсторонее включение. Диаграммы Венна для трех множеств.

    презентация [564,8 K], добавлен 23.12.2013

  • Сущность теории динамических систем и роль связи структуры системы с её динамикой. Конечные динамические системы и сокращение мономиальных систем. Проблема изучения Булевых мономиальных систем и линейных систем над конечными коммутативными кольцами.

    курсовая работа [428,2 K], добавлен 08.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.