Определение площади криволинейной трапеции. Определение интеграла

Порядок и решение дифференциального уравнения. Интегрирование как процесс нахождения решения дифференциального уравнения. Уравнение с частными производными. Теорема существования и единственности решения дифференциального уравнения первого порядка.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 22.05.2014
Размер файла 29,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ГОУ СПО ЯО Переславский политехнический техникум

Реферат

по математике на тему:

«Определение площади криволинейной трапеции. Определение интеграла»

Выполнил студент группы 01-ам

Варенков Андрей

Проверил преподаватель

Компанец Юрий Викторович

Переславль-Залесский 2014

1. Определение дифференциального уравнения и связанных с ним общих понятий

Дифференциальным уравнением называется такое уравнение, которое содержит производные от искомой функции и может содержать искомую функцию и независимую переменную.

Уравнение вида F (x, y (x), y ' (x), …, y (n)(x)) = 0, где x -- независимая действительная переменная, y (x) -- искомая функция, называетсяобыкновенным дифференциальным уравнением.

Если уравнение содержит несколько независимых переменных, искомую функцию и частные производные от искомой функции по независимым переменным, например

x -- = 0, z = z (x, y),

уравнение дифференциальный решение интегрирование

то оно называется уравнением с частными производными.

В дальнейшем будем рассматривать только обыкновенные дифференциальные уравнения.

Порядком дифференциального уравнения называется наивысший порядок, входящих в него производных.

Решением дифференциального уравнения называется всякая функция y = ц (x), которая при подстановке в уравнение обращает его в верное равенство.

График решения дифференциального уравнения называется интегральной кривой этого уравнения. Процесс нахождения решения дифференциального уравнения называется интегрированием этого уравнения.

Не всегда удается получать решения в явном виде, например

x2 + y2 = C.

Решение дифференциального уравнения, полученное в неявном виде F (x, y) = 0, называется интегралом дифференциального уравнения.

Общим решением дифференциального уравнения называется такое его решение, содержащее произвольные постоянные, из которого любое частное решение может быть получено при соответствующем подборе произвольных постоянных.

Частное решение дифференциального уравнения -- это решение, не содержащее произвольных постоянных.

Аналогично определяются общий интеграл и частный интеграл дифференциального уравнения.

Если уравнение не интегрируется в элементарных функциях, но все его решения выражаются через неопределенные интегралы от элементарных функций, то говорят, что уравнение проинтегрировано в квадратурах. Квадратурой называется операция взятия неопределенного интеграла.

Например, все решения уравнения

y' =

даются формулой

y = dx + C.

2. Дифференциальные уравнения первого порядка как поле направлений

Общий вид дифференциального уравнения первого порядка:

F (x, y, y ' ) = 0.

Если его возможно разрешить относительно производной y ', то оно приводится к виду

y ' = f (x, y). (3.1)

Такая форма дифференциального уравнения первого порядка называется нормальной, а уравнение является разрешимым относительно производной от искомой функции.

Выясним геометрический смысл дифференциального уравнения первого порядка вида (3.1).

Общее решение геометрически задает однопараметрическое семейство интегральных кривых.

Решение y = y (x) уравнения (3.1) представляет собой на плоскости XOY кривую, а y ' -- угловой коэффициент касательной к этой кривой в точке M(x, y). Уравнение (3.1) дает, таким образом, соотношение между координатами точки и угловым коэффициентом касательной к интегральной кривой в этой точке.

Задание уравнения (3.1) означает, что в каждой точке M (x, y) области, где определена функция f (x, y), задано направление касательной к интегральной кривой в точке M (x, y). Значит, имея уравнение (3.1) мы получаем поле направлений. Это поле графически можно изобразить, поместив в каждой точке M (x, y) черточку, наклоненную к оси Ox под углом, тангенс которого равен f (x, y).

Задача интегрирования уравнения (3.1) заключается в том, чтобы найти семейство кривых, у которых касательная к каждой точке совпадает с направлением поля в этих точках. Такое истолкование уравнения (3.1) дает графический способ построения его решения.

3. Задача Коши

Дифференциальное уравнение обычно имеет бесчисленное множество решений. Для того, чтобы из всех решений выделить одно, надо задать какое-либо конкретное значение функции при некотором значении независимого переменного. Задать значение y0 искомой функции при некотором значении x0 независимого переменного -- это значит задать начальное условие

= y0.

С геометрической точки зрения задача отыскания решения дифференциального уравнения с заданным начальным условием равносильна тому, чтобы найти ту интегральную кривую, которая проходит через точку M0 (x0, y0) на плоскости XOY.

Естественно возникает вопрос: всегда ли существует решение дифференциального уравнения, удовлетворяющее данному начальному условию, и, если существует, то будет ли оно единственным?

Ответ на поставленные вопросы дает теорема существования и единственности решения дифференциального уравнения первого порядка.

Теорема

Пусть дано уравнение y' = f (x, y) с начальным условием = y0, и относительно функции f (x, y) выполнены следующие условия:

1. В прямоугольнике R, определенном неравенствами

x0 - a ? x ? x0 + a,

y0 - b ? y ? y0 + b,

функция f (x, y) непрерывна. Из этого условия вытекает, что в замкнутой области R функция f (x, y) ограничена, т.е. существует действительное число M > 0 такое, что для любой точки (x, y) ? R ? | f (x, y)| ? M.

2. В области R функция f (x, y) относительно аргумента y удовлетворяет условию Липшица, т.е. существует такое действительное число A > 0, что | f(x, y1) - f (x, y2)| ? A|y1 - y2|.

Обозначим через h меньшее из двух чисел a, .

При данных условиях существует единственное решение y = y(x), где x0 - h ? x ? x0 + h, удовлетворяющее начальному условию = y0.

Источник

1. http://fmf.bigpi.biysk.ru/matan/files/3.html.

Размещено на Allbest.ru

...

Подобные документы

  • Проверка непрерывности заданных функций. Интегрирование заданного уравнения и выполние преобразования с ним. Интегрирование однородного дифференциального уравнения. Решение линейного дифференциального уравнения. Общее решение неоднородного уравнения.

    контрольная работа [65,3 K], добавлен 15.12.2010

  • Порядок и процедура поиска решения дифференциального уравнения. Теорема существования и единственности решения задачи Коши. Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения первого порядка, с разделяющими переменными.

    лекция [744,1 K], добавлен 24.11.2010

  • Особенности выражения производной неизвестной функции. Общий вид дифференциального уравнения первого порядка, его решение. Сущность теоремы Коши (о существовании и единственности решения), её геометрический смысл. Общее и частное решение уравнения.

    презентация [77,7 K], добавлен 17.09.2013

  • Порядок решения дифференциального уравнения 1-го порядка. Поиск частного решения дифференциального уравнения, удовлетворяющего указанным начальным условиям. Особенности применения метода Эйлера. Составление характеристического уравнения матрицы системы.

    контрольная работа [332,6 K], добавлен 14.12.2012

  • Общее решение дифференциального уравнения первого порядка. Уравнение с разделенными переменными. Выбор частного интеграла. Частное решение дифференциального уравнения второго порядка. Вероятность проявления события, интегральная формула Муавра-Лапласа.

    контрольная работа [75,5 K], добавлен 19.08.2009

  • Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.

    курсовая работа [347,1 K], добавлен 26.01.2015

  • Решение дифференциального уравнения методом численного интегрирования Адамса. Методы, основанные на применении производных высших порядков. Формулы, обеспечивающие более высокую степень точности, требующие вычисления третьей производной искомого решения.

    курсовая работа [81,9 K], добавлен 29.08.2010

  • Общий интеграл уравнения, применение метода Лагранжа для решения неоднородного линейного уравнения с неизвестной функцией. Решение дифференциального уравнения в параметрической форме. Условие Эйлера, уравнение первого порядка в полных дифференциалах.

    контрольная работа [94,3 K], добавлен 02.11.2011

  • Задачи, приводящие к дифференциальным уравнениям. Теорема существования, единственности решения задачи Коши. Общее решение дифференциального уравнения, изображаемое семейством интегральных кривых на плоскости. Способ нахождения огибающей семейства кривых.

    реферат [165,4 K], добавлен 24.08.2015

  • Задачи Коши для дифференциальных уравнений. График решения дифференциального уравнения I порядка. Уравнения с разделяющимися переменными и приводящиеся к однородному. Однородные и неоднородные линейные уравнения первого порядка. Уравнение Бернулли.

    лекция [520,6 K], добавлен 18.08.2012

  • Понятие и математическое описание элементов дифференциального уравнения как уравнения, связывающего искомую функцию одной или нескольких переменных. Состав неполного и линейного дифференциального уравнения первого порядка, их применение в экономике.

    реферат [286,2 K], добавлен 06.08.2013

  • Общий вид линейного однородного уравнения. Нахождение производных, вещественные и равные корни характеристического уравнения. Пример решения дифференциального уравнения с постоянными коэффициентами. Общее и частное решение неоднородного уравнения.

    презентация [206,3 K], добавлен 17.09.2013

  • Задачи на нахождение неопределенного интеграла с применением метода интегрирования по частям. Вычисление площади, ограниченной заданными параболами. Решение дифференциального уравнения первого порядка. Исследование на сходимость ряда; признаки сходимости.

    контрольная работа [136,7 K], добавлен 16.03.2010

  • Методы построения общего решения уравнения Бернулли. Примеры решения задач с помощью него. Особое решение уравнения Бернулли и его особенности. Понятие дифференциального уравнения, его виды и свойства. Значение уравнения Бернулли в математике и физике.

    курсовая работа [183,1 K], добавлен 25.11.2011

  • Порядок и принципы составления дифференциального уравнения, методика нахождения неизвестных значений. Замена исходного дифференциального уравнения на систему n-линейных уравнений относительно n-неизвестных. Формирование и решение системы уравнений.

    задача [118,8 K], добавлен 20.09.2013

  • Понятие дифференциального уравнения. Нахождение первообразной для заданной функции. Нахождение решения дифференциального уравнения. Выделение определенной интегральной кривой. Понятие произвольных независимых постоянных. Уравнение в частных производных.

    презентация [42,8 K], добавлен 17.09.2013

  • Основные правила расчета значений дифференциального уравнения. Изучение выполнения оценки погрешности вычислений, осуществления аппроксимации решений. Разработка алгоритма и написание соответствующей программы. Построение интерполяционного многочлена.

    курсовая работа [212,6 K], добавлен 11.12.2013

  • Решение дифференциального уравнения, удовлетворяющие условию Липшица. Доказательство теоремы о существовании и единственности липшицевого решения. Принцип неподвижной точки (Шаудера). Пример неединственности (Winston). Доказательство по теореме Арцела.

    реферат [109,4 K], добавлен 14.01.2010

  • Нахождение частных производных, градиента функции. Вычисление интеграла, переход от двойного интеграла к последовательному, пределов интегрирования. Общее и частное решение дифференциального уравнения второго порядка. Применение признака Даламбера.

    контрольная работа [297,6 K], добавлен 11.05.2013

  • Дифференциальное уравнение первого порядка. Формулировка теоремы существования и единственности. Линейные уравнения с постоянными коэффициентами. Доказательство теоремы существования и единственности для одного уравнения. Теория устойчивости Ляпунова.

    дипломная работа [1,0 M], добавлен 11.04.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.