Античная математика

Понятие математики как науки. Понятие античности как отдельной эпохи. Рождение математики в Элладе. Афинское содружество ученых: школа Платона. Математическая вселенная Евклида. Наследники Евклида: Эратосфен и Архимед. Закат греческой математики.

Рубрика Математика
Вид дипломная работа
Язык русский
Дата добавления 20.05.2014
Размер файла 44,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра практической психологии

Античная математика

КУРСОВАЯ РАБОТА

по специальности 050706

Выполнила: студентка 3 курса 1 группы

очной формы обучения

психолого-педагогического факультета

Скосарь Дарья

ВОРОНЕЖ 2013

Содержание

Введение

1. Теоретический анализ развития математики в эпоху античности

1.1 Понятие математики как науки

1.2 Понятие античности как отдельной эпохи

1.3 Рождение математики в Элладе

1.4 Афинское содружество ученых: школа Платона

1.5 Математическая вселенная Евклида

1.6 Наследники Евклида: Эратосфен и Архимед

1.7 Закат греческой математики

Заключение

Список используемой литературы

Введение

Античная философия продемонстрировала, как можно планомерно развертывать представление о различных типах объектов и способах их мысленного освоения. Она дала образцы построения знаний о таких объектах. Это поиск единого основания (первоначал и причин) и выведение из него следствий (необходимое условие теоретической организации знаний). Эти образцы оказали бесспорное влияние на становление теоретического слоя исследований в античной математике.

Разработка теоретических знаний математики проводилась в античную эпоху в тесной связи с философией и в рамках философских систем. Практически все крупные философы античности -- Демокрит, Платон, Аристотель и др. -- уделяли огромное внимание математическим проблемам. Они придали идеям пифагорейцев, отягощенным многими мистико-мифологическими наслоениями, более строгую рациональную форму. И Платон, и Аристотель, хотя и в разных версиях, отстаивали идею, что мир построен на математических принципах, что в основе мироздания лежит математический план. Эти представления стимулировали как развитие собственно математики, так и ее применение в различных областях изучения окружающего мира. В античную эпоху уже была сформулирована идея о том, что язык математики должен служить пониманию и описанию мира. Как подчеркивал Платон, “Демиург (Бог) постоянно геометризирует”, т.е. геометрические образцы выступают основой для постижения космоса. Развитие теоретических знаний математики в античной культуре достойно завершилось созданием первого образца научной теории -- евклидовой геометрии. В принципе ее построение, объединившее в целостную систему отдельные блоки геометрических задач, решаемых в форме доказательства теорем, знаменовали формирование математики в особую, самостоятельную науку.

Целью моей курсовой работы является изучить особенности формирования математики в эпоху античности.

В соответствии с целью курсовой работы были поставлены следующие задачи:

1. Провести теоретический анализ литературы по теме работы.

2. Сделать выводы, опираясь на полученные результаты.

Объект - математика как наука.

Предмет - математика античности.

Гипотеза - эпоха античности повлияла на становление математики как отдельной науки.

В работе использовался метод сбора теоретической информации: анализ, синтез, обобщение и систематизация имеющихся в литературе научных представлений по теме курсовой работы.

При написании работы соблюдалась следующая структура.

Курсовая работа посвящается теоретическому анализу понятия математика, античность, философских точек зрения эпохи античности, адекватных теме исследования.

1. Теоретический анализ развития математики в эпоху античности

1.1 Понятие математики как науки

Математика - наука о количественных отношениях и пространственных формах действительного мира.

"Чистая математика имеет своим объектом пространственные формы и количественные отношения действительного мира, стало быть -- весьма реальный материал. Тот факт, что этот материал принимает чрезвычайно абстрактную форму, может лишь слабо затушевать его происхождение из внешнего мира. Но чтобы быть в состоянии исследовать эти формы и отношения в чистом виде, необходимо совершенно отделить их от их содержания, оставить это последнее в стороне как нечто безразличное" [4].

Пифагорейцы первыми возвысили математику до ранее неведомого ей ранга: числа и числовые отношения они стали рассматривать как ключ к пониманию вселенной и ее структуры. Они впервые пришли к убеждению, что "книга природы написана на языке математики", как спустя почти два тысячелетия выразил эту мысль Галилей.

Для представлений о науке, как они сложились к XVII-XVIII вв., особенно у философов эпохи Просвещения, характерно убеждение в том, что наука по своему существу противоположна религии. Это представление отражает тот период в развитии науки, когда ученым приходилось вести борьбу с религией за возможность свободного научного исследования. Но применительно к другим периодам развития науки это представление оказывается не всегда справедливым. Исторически научное знание вступало в самые различные - и порой весьма неожиданные - отношения с мифологической, религиозной и художественной формами сознания. Так, перемещение математических исследований из сферы практически-прикладной в сферу философско-теоретическую, еще не отделившуюся от религиозно-мистического восприятия мира, послужило тем историческим фактором, благодаря которому математика превратилась в теоретическую науку.

Прежде чем появилась математика как теоретическая система, возникло учение о числе как некотором божественном начале мира, и это, казалось бы, не математическое, а философско-теоретическое учение сыграло роль посредника между древней восточной математикой как собранием образцов для решения отдельных практических задач и древнегреческой математикой как системой положений, строго связанных между собой с помощью доказательства. Вот почему нам кажется неправомерной попытка некоторых историков науки принципиально отделить пифагорейских математиков эпохи Платона от ранних пифагорейцев.

Приложения математики весьма разнообразны. Принципиально область применения математического метода не ограничена: все виды движения материи могут изучаться математически. Однако роль и значение математического метода в различных случаях различны. Никакая определённая математическая схема не исчерпывает всей конкретности действительных явлений, поэтому процесс познания конкретного протекает всегда в борьбе двух тенденций; с одной стороны, выделения формы изучаемых явлений и логического анализа этой формы, с другой стороны, вскрытия моментов, не укладывающихся в установленные формы, и перехода к рассмотрению новых форм, более гибких и полнее охватывающих явления.

Математика (греч. mathematike, от mathema - знание, наука) наука, в которой изучаются пространственные формы и количественные отношения [6].

Современное понятие математики - наука о математических структурах (множествах, между элементами которых определены некоторые отношения)[9].

У представителей науки начала 19 века, не являющихся математиками, можно найти такие общедоступные определения математики.

"Чистая математика имеет своим объектом пространственные формы и количественные отношения действительного мира" [3].

"Математика - наука о величинах и количествах; все, что можно выразить цифрою, принадлежит математике. Математика может быть чистой и прикладной [2].

Математика делится на арифметику и геометрию; первая располагает цифрами, вторая - протяжениями и пространствами. Алгебра заменяет цифры более общими знаками, буквами; аналитика добивается выразить все общими формулами, уравнениями, без помощи чертежа" [1].

Современная математика насчитывает множество математических теорий: математическая статистика и теория вероятности, математическое моделирование, численные методы, теория групп, теория чисел, векторная алгебра, теория множеств, аналитическая и проективная геометрия, математический анализ и т.д.

Несмотря на то, что математических теорий достаточно много и они, на первый взгляд, могут и не иметь ничего общего, внутренняя эволюция математической науки упрочила единство ее различных частей и создала центральное ядро. Существенным в этой эволюции является систематизация отношений, существующих между различными математическими теориями; ее итогом явилось направление, которое обычно называют "аксиоматический метод". В теории, построенной в согласии с аксиоматическим методом, начинают с небольшого количества неопределяемых (первичных) понятий, с помощью которых образуются утверждения, называемые аксиомами.

Прочие понятия, изучаемые в теории, определяются через первичные, и из аксиом и определений выводятся теоремы. Теория становится рекурсивно структурированной, ее можно представить в виде матрешки, в которой понятия и их свойства как бы являются вложенными друг в друга. Каждая математическая теория является цепочкой высказываний, которые выводятся друг из друга согласно правилам логики, т.е. объединяющим началом математики является "дедуктивное рассуждение". Развитие математической теории в таком стиле - это первый шаг по направлению к ее формализации.

Открытие неевклидовых геометрий и создание теории множеств привели к перестройке всего здания математики и созданию совершенно новых ее отраслей. Важное значение приобрела в современной математике математическая логика. Методы математики широко используются в точном естествознании. Применение ее в биологии и общественных науках до последнего времени носило случайный характер. Создание (под непосредственным влиянием практики) таких отраслей, как линейное программирование, теория игр, теория информации, и появление электронных математических машин открывают здесь совершенно новые перспективы. Философские вопросы математики (характер и происхождение математической абстракции, ее особенности) всегда являлись ареной борьбы между материализмом и идеализмом. Особенно важное значение имеют философские вопросы, возникшие в связи с проблемами оснований математики [4].

Математика играет важную роль в естественнонаучных, инженерно-технических и гуманитарных исследованиях. Причина проникновения математики в различные отрасли знаний заключается в том, что она предлагает весьма четкие модели для изучения окружающей действительности в отличие от менее общих и более расплывчатых моделей, предлагаемых другими науками. Без современной математики с ее развитым логическими и вычислительным аппаратом был бы невозможен прогресс в различных областях человеческой деятельности. Математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также и элементом общей культуры.

1.2 Понятие античности как отдельной эпохи

математика античность эвклид платон

Термин античность - употребляется для обозначения всего, что было связано с греко-римской древностью, от гомеровской Греции до падения Западной Римской империи, возник в эпоху Возрождения [5]. Тогда же появились понятия "античная история", "античная культура", "античное искусство", "античный город" и т.д. Понятие "древнегреческая наука", вероятно, впервые было обосновано П. Таннери в конце XIX в., а понятие "античная наука" - С. Я. Лурье в 30-х годах ХХ века [8].

Своим появлением наука обязана стремлением человека к повышению производительности своего труда и, в конечном итоге, уровня жизни. Постепенно, еще с доисторических времён накапливались знания о природных явлениях и их взаимосвязи.

Одной из первых наук стала астрономия, результатами которой активно пользовались жрецы и священнослужители. В число древних прикладных наук входили геометрия - наука о точном измерении площадей, объёмов и расстояний - и механика. В состав геометрии входила и география.

В Древней Греции к VI в. до н. э. сложились наиболее ранние теоретические научные системы, стремившиеся объяснить действительность набором основных положений. В частности, появилась широко распространившаяся на территории Европы система первоэлементов, а философы Левкипп и Демокрит создали первую атомистическую теорию строения вещества, впоследствии развитую Эпикуром. Долгое время наука не была в полной мере отделена от философии, а была ее составной частью. Однако уже древние философы выделяли в составе философии космогонию и физику: системы представлений о происхождении и устройстве мира соответственно [17].

Один из ярчайших представителей древнегреческой философии является Аристотель. Проведя огромное количество наблюдений и составив весьма подробное описание своих представлений о физике и биологии, он тем не менее не проводил экспериментов.

До эпохи научных революций считалось, что создаваемые человеком искусственные условия опыта не могут дать результатов, которые бы адекватно описывали явления, происходящие в природе.

Понятие античной науки

Среди ученых-науковедов наблюдаются две крайние точки зрения в самом понятии науки, находящиеся в радикальном противоречии друг с другом.

Первая точка зрения говорит о том, что наука в собственном смысле слова родилась в Европе лишь в XVI-XVII вв., в период, обычно именуемый великой научной революцией. Ее возникновение связано с деятельностью таких ученых, как Галилей, Кеплер, Декарт, Ньютон [10]. Именно к этому времени следует отнести рождение собственно научного метода, для которого характерно специфическое соотношение между теорией и экспериментом. Тогда же была осознана роль математизации естественных наук - процесса, продолжающегося до нашего времени и теперь уже захватившего ряд областей знания, которые относятся к человеку и человеческому обществу [9].

Античные мыслители, строго говоря, еще не знали эксперимента и, следовательно, не обладали подлинно научным методом: их умозаключения были в значительной степени продуктом беспочвенных спекуляций, которые не могли быть подвергнуты настоящей проверке. Исключение может быть сделано, пожалуй, лишь для одной математики, которая в силу своей специфики имеет чисто умозрительный характер и потому не нуждается в эксперименте. Что же касается научного естествознания, то его в древности фактически еще не было; существовали лишь слабые зачатки позднейших научных дисциплин, представлявшие собой незрелые обобщения случайных наблюдений и данных практики. Глобальные же концепции древних о происхождении и устройстве мира никак не могут быть признаны наукой: в лучшем случае их следует отнести к тому, что позднее получило наименование натурфилософии (термин, имеющий явно одиозный оттенок в глазах представителей точного естествознания) [11].

Другая точка зрения, прямо противоположная только что изложенной, не накладывает на понятие науки сколько-нибудь жестких ограничений. По мнению ее адептов, наукой в широком смысле слова можно считать любую совокупность знаний, относящуюся к окружающему человека реальному миру. С этой точки зрения зарождение математической науки следует отнести к тому времени, когда человек начал производить первые, пусть даже самые элементарные операции с числами; астрономия появилась одновременно с первыми наблюдениями за движением небесных светил; наличие некоторого количества сведений о животном и растительном мире, характерном для данного географического ареала, уже может служить свидетельством первых шагов зоологии и ботаники. Если это так, то ни греческая и ни любая другая из известных нам исторических цивилизаций не может претендовать на то, чтобы считаться родиной науки, ибо возникновение последней отодвигается куда-то очень далеко, в туманную глубь веков [13].

Обращаясь к начальному периоду развития науки, мы увидим, что там имели место различные ситуации. Так, вавилонскую астрономию следовало бы отнести к разряду прикладных дисциплин, поскольку она ставила перед собой чисто практические цели. Проводя свои наблюдения, вавилонские звездочеты меньше всего интересовались устройством вселенной, истинным (а не только видимым) движением планет, причинами таких явлений, как солнечные и лунные затмения. Эти вопросы, по-видимому, вообще не вставали перед ними. Их задача состояла в том, чтобы пред вычислять наступление таких явлений, которые, согласно взглядам того времени, оказывали благоприятное или, наоборот, пагубное воздействие на судьбы людей и даже целых царств [2]. Поэтому несмотря на наличие огромного количества наблюдений и на весьма сложные математические методы, с помощью которых эти материалы обрабатывались, вавилонскую астрономию нельзя считать наукой в собственном смысле слова.

Прямо противоположную картину мы обнаруживаем в Греции. Греческие ученые, сильно отстававшие от вавилонян в отношении знания того, что происходит на небе, с самого начала поставили вопрос об устройстве мира в целом. Этот вопрос интересовал греков не ради каких-либо практических целей, а сам по себе; его постановка определялась чистой любознательностью, которая в столь высокой степени была присуща жителям тогдашней Эллады [12]. Попытки решения этого вопроса сводились к созданию моделей космоса, на первых порах имевших спекулятивный характер. Как бы ни были фантастичны эти модели с нашей теперешней точки зрения, их значение состояло в том, что они предвосхитили важнейшую черту всего позднейшего естествознания -- моделирование механизма природных явлений.

Нечто аналогичное имело место и в математике. Ни вавилоняне, ни египтяне не проводили различия между точными и приближенными решениями математических задач. Любое решение, дававшее практически приемлемые результаты, считалось хорошим. Наоборот, для греков, подходивших к математике чисто теоретически, имело значение прежде всего строгое решение, полученное путем логических рассуждений. Это привело к разработке математической дедукции, определившей характер всей последующей математики [14]. Восточная математика даже в своих высших достижениях, которые долгое время оставались для греков недоступными, так и не подошла к методу дедукции.

Итак, отличительной чертой греческой науки с момента ее зарождения была ее теоретичность, стремление к знанию ради самого знания, а не ради тех практических применений, которые могли из него проистечь. На первых этапах существования науки эта черта сыграла, бесспорно, прогрессивную роль и оказала большое стимулирующее воздействие на развитие научного мышления [15].

Признаки и специфика античной науки

Существуют четыре основных признака античной науки. Эти признаки также являются признаками ее отличия от ненауки предшествующей истории:

1. Наука, как род деятельности по приобретению новых знаний. Для осуществления такой деятельности необходимы определенные условия: специальная категория людей, средства для ее осуществления и достаточно развитые способы фиксации знаний;

2. Самоценность науки, ее теоретичность, стремление к знанию ради самого знания;

3. Рациональный характер науки, что прежде всего выражается в доказательности ее положений и наличии специальных методов приобретения и проверки знаний;

4. Систематичность (системность) научных знаний, как по предметному полю, так по фазам: от гипотезы до обоснованной теории.

Античная наука понимала значение опытного познания, о чем свидетельствует Аристотель, а до него еще Демокрит [19]. Античные ученые умели хорошо наблюдать окружающую природу. Они достигли высокого уровня в технике измерений длин и углов, о чем мы можем судить на основании процедур, разрабатывавшихся ими, например, для выяснения размеров земного шара (Эратосфен), для измерения видимого диска Солнца (Архимед) или для определения расстояния от Земли до Луны (Гиппарх, Посидоний, Птолемей) [22]. Но эксперимента как искусственного воспроизведения природных явлений, при котором устраняются побочные и несущественные эффекты и которое имеет своей целью подтвердить или опровергнуть то или иное теоретическое предположение,- такого эксперимента античность еще не знала. Между тем именно такой эксперимент лежит в основе физики и химии - наук, приобретших ведущую роль в естествознании Нового времени. Этим объясняется, почему широкая область физико-химических явлений осталась в античности во власти чисто качественных спекуляций, так и не дождавшись появления адекватного научного метода [24].

Одним из признаков настоящей науки является ее самоценность, стремление к знанию ради самого знания. Этот признак, однако, отнюдь не исключает возможности практического использования научных открытий. Великая научная революция XVI-XVII вв. заложила теоретические основы для последующего развития промышленного производства, направления нового на использование сил природы в интересах человека. С другой стороны, потребности техники явились в Новое время мощным стимулом научного прогресса. Подобное взаимодействие науки и практики становится с течением времени все более тесным и эффективным. В наше время наука превратилась в важнейшую производительную силу общества.

1.3 Рождение математики в Элладе

Появление этой науки в 6 веке до н.э. до сих пор кажется чудом. В течение 20 или 30 предыдущих веков народы Древнего Востока сделали немало открытий в арифметике, геометрии и астрономии. Но единую математическую науку они не создали, да и не пытались ее создать. Эллинам же это удалось с первой попытки, в течение одного столетия. Что подготовило их к такому подвигу?

На полтораста лет раньше - в середине 8 века до н.э. - эллины пережили культурную революцию. Под влиянием финикийцев они изобрели свой алфавит, включив в него гласные буквы. Тогда же были записаны поэмы Гомера. Они стали первым учебником культуры, доступным каждому эллину - даже неграмотному. Ведь стихи нетрудно выучить наизусть! В ту же эпоху начались Олимпийские игры. На этих "съездах доброй воли" раз в 4 года встречались и дружески общались самые активные и просвещенные граждане из всех городов Эллады. Число таких городов с середины 8 века начало быстро расти, за счет заморской колонизации.

Скудная почва Эллады приводила к перенаселению каждого быстро развивающегося города. Тогда несколько десятков или сотен семей вместе переправлялись за море и селились на берегу - рядом с местными "варварами". У них эллины покупали зерно и различное сырье, в обмен на продукты своего ремесла. Разведав окрестные моря и земли, эллины знакомились с культурой соседних народов, учились у них и сами пытались их просветить. Все это происходило в форме народной самодеятельности, без приказа властей. Жители городской республики - полиса - ежедневно обсуждали на улицах и площадях все волнующие их вопросы: от видов на урожай и настроения окрестных варваров до заморских вестей, привезенных заезжим купцом.

Самые интересные вести приходили из царств Ближнего Востока: из Египта и Ассирии, а после гибели Ассирийской державы - из поделивших ее владения Вавилонии и Мидии. В середине 6 века до н.э. все эти земли попали под власть нового народа - персов, которые установили прочный мир в своей огромной империи. Теперь многие любознательные эллины смогли безопасно путешествовать по землям Персидской державы: одни - с торговыми целями, другие - в надежде приобщиться к мудрости древних египтян и вавилонян.

Дома такой путешественник возбуждал жадное любопытство сограждан. Но не во всем ему верили на слово. Например, он говорил, будто в Египте стоят рукотворные холмы из камня - гробницы древних царей, высотою в 200 или 300 локтей каждая. Неужели он сам измерил их высоту? Как он это сделал? Пусть докажет, что его слова - правда!

И еще: он сказал, что мудрые египтяне умеют предсказать срок будущего затмения Луны или Солнца. Пусть объяснит, как они это делают! И когда мы увидим очередное затмение в нашем городе?

Видимо, первым греком, который научился убедительно отвечать на такие вопросы, стал Фалес из города Милета; он жил между 625 и 547 годами до н.э. Известно, что в 585 году до н.э. Фалес впервые предсказал эллинам солнечное затмение. Позднее эллины признали Фалеса одним из семи великих мудрецов основателей греческой культуры и науки. Сделал ли Фалес какие-то новые открытия в математике? Может быть, и нет. Не исключено, что все приписываемые ему теоремы были прежде известны, как факты, египтянам и вавилонянам. Но заслуга Фалеса в том, что он превратил эти сведения и рецепты в доказанные теоремы. Таким образом, Фалес превратил древнюю и священную ученость в предмет сомнений и доказательных споров. Искушенные в спортивных состязаниях, эллины не знали до той поры сложных интеллектуальных игр, вроде шахмат. С легкой руки Фалеса, геометрия стала первой такой игрой. Вскоре она сделалась в Элладе почетным и увлекательным занятием, как бы национальным видом спорта - наравне с политикой. В геометрии появились "гроссмейстеры", которые превзошли достижения Фалеса и начали открывать такие математические истины, которые не снились древним мудрецам [7].

Первым в ряду этих героев оказался Пифагор с острова Самос: он жил примерно с 580 по 500 год до н.э. Около 540 года до н.э. Пифагор основал в греческом городе Кротоне на побережье Южной Италии первый "математический клуб", больше похожий на тайное религиозное братство.

1.4 Афинское содружество ученых: школа Платона

В Афинах с 511 года до н.э. процветала демократическая республика. Здесь не было никаких секретов, обсуждению подвергалось все: от сообщений о том, что с неба выпал железный дождь, до преданий о том, как финикийцы за три года проплыли вокруг Африки и вернулись в Средиземное море мимо Геркулесовых столпов (так эллины называли горы по берегам пролива Гибралтар). Высочайший накал культурной жизни и научных споров привлекал в Афины самых талантливых ученых Эллады. Среди них был Анаксагор из Клазомен - последний питомец научной школы Милета. Он жил примерно в 500-428 годах до н.э. и около 460 года до н.э. переехал в Афины, где стал другом прославленного политика Перикла.

По складу ума Анаксагор был противоположен Пифагору: не математик, а физик, предпочитающий измерения и расчеты строгим логическим доказательствам. Он не верил ни в каких богов, кроме (может быть) Мирового Разума, а все небесные тела считал подобными Земле (то есть - не идеальными). Например, Солнце - это раскаленный камень, а метеориты - осколки Солнца, упавшие на Землю.

Очень просто: нужно спросить купцов, прибывающих в Афины вскоре после солнечного затмения! В каких городах Эллады видели полное затмение, а в каких - частичное? Расстояния между городами нам известны; по ним мы рассчитаем размер лунной тени на Земле, равный диаметру самой Луны или Солнца! Сказано - сделано. На основе опросов и расчетов Анаксагор заключил, что диаметр Луны или Солнца примерно равен диаметру полуострова Пелопоннес, где расположена Спарта. Так впервые стереометрия была успешно применена в астрономии и стала самостоятельной наукой - хотя не столь полной и строгой, как планиметрия. Например, связь между площадью круга и объемом шара оставалась не известна еще 200 лет - пока ее не выяснил Архимед [1].

Мы знаем теперь, что Анаксагор ошибся в оценке диаметра Луны примерно в 5 раз, а в оценке размера Солнца - еще больше, поскольку Солнце дальше от Земли, чем Луна. Однако математическая основа метода Анаксагора безупречна - если учесть зону частичного (а не только полного) солнечного затмения. Но современников Анаксагора волновали иные проблемы. Астроном подвергся осуждению благочестивых афинских граждан. Как он смеет измерять размеры бога Гелиоса (Солнца) и богини Гекаты (Луны)? Это - кощунство и богохульство! Астронома привлекли к суду, и даже заступничество Перикла не помогло; Анаксагор предпочел покинуть Афины. Вскоре после его изгнания в Афинах родился мальчик Аристокл; позднее он стал учеником Сократа и получил прозвище Платон - "Широкоплечий" [13].

Платон жил в 427-347 годах до н.э. и характером напоминал Пифагора. Он тоже хотел постичь весь мир и исправить в нем все, что неправильно. Но через сто лет после Пифагора всем было ясно: в науке не надо секретничать! В 387 году до н.э. Платон основал Академию - первый общедоступный университет Европы, который действовал более 8 веков - до 529 года. Свое название эта школа получила от имени древнего героя Академа. Ему была посвящена роща, в которой прогуливались ученики Платона, ведя бесконечные споры обо всем на свете. Требование к участникам споров было одно: хорошее знание геометрии. Кто ее освоил - тот может постичь все, что пожелает, ибо геометрия правит всем миром! При этом сам Платон, кажется, не сделал крупных открытий в математике: основные теоремы геометрии были уже всем известны, а споры кипели вокруг их осмысления. Например: есть ли предел дробления природных тел? Демокрит из Абдеры считает, что существуют мелкие частицы - атомы, которые нельзя разделить пополам. Напротив - Зенон из Элеи уверен, что каждый отрезок можно неограниченно делить пополам, не достигая неделимой точки. Кто из них прав? Может быть, правы оба - но в разных областях? Допустим, что Зенон прав относительно идеальных математических сущностей, а Демокрит прав относительно природных тел. В таком случае получают разумное решение предложенные Зеноном парадоксы - вроде Ахиллеса и черепахи, которую быстроногий герой никогда не догонит [25].

Эта задача не покорилась ученикам Платона. Они не смогли построить циркулем и линейкой ни отрезок с длиною, равной длине данной окружности, ни квадрат с площадью, равной площади данного квадрата. Так проблема "квадратуры круга" вошла в число классических задач древности - наряду с удвоением куба и трисекцией угла [8].

В середине 4 века до н.э. наследники Платона поднялись на вершину классической геометрии - но в то же время достигли пределов этой науки. После этого школа Платона разделилась. Одни питомцы Академии принялись наводить порядок в уже освоенном мире планиметрии и стереометрии; другие старались выйти за его пределы с помощью новых методов работы [16].

Самым упрямым и непослушным из учеников Платона был Аристотель из Стагиры. Он жил с 384 по 322 год до н.э., и после смерти учителя основал в Афинах свою школу - Ликей. Позднее Аристотель уехал в Македонию, где стал учителем царевича Александра - будущего завоевателя Эллады и восточных стран. Аристотель считал, что главные открытия в геометрии уже сделаны. Пора переносить ее методы в другие науки: физику и зоологию, ботанику и политику. Но самое важное орудие геометрии - это логический метод рассуждений, который ведет к верным выводам из любых верных предпосылок. Этот метод Аристотель изложил в книге "Органон"; сейчас ее называют началом математической логики.

Впрочем, для обоснования физической науки одной логики мало; нужны эксперименты, измерения и расчеты вроде тех, которые проводил Анаксагор. Ставить опыты Аристотель не любил. Он предпочитал угадывать истину интуитивно - и в итоге нередко заблуждался, а поправить его было некому. Поэтому греческая физика состояла, в основном, из гипотез: иногда гениальных, но порою грубо ошибочных. Доказанных теорем в этой науке не было.

В противоположность Аристотелю, Евдокс из Книда не выходил за рамки точных наук: математики и астрономии. Зато в этой области он превзошел Пифагора, создав первую теорию иррациональных чисел.

Основная идея Евкдокса проста: назовем "числом" (или "величиной") длину любого отрезка! В таком случае все числа можно изобразить точками на луче, ведущем из центра в бесконечность. Одна из этих точек особенно замечательна: это правый конец отрезка длины 1. Другие замечательные точки - концы отрезков, соизмеримых с единичным отрезком. Их мы называем рациональными числами [24].

Но, согласно Пифагору, есть отрезки, не соизмеримые с единичным отрезком. Их длины (которые мы называем иррациональными числами) тоже можно сравнивать между собой. [22].

Большинство геометров Эллады испугались нежданной бесконечности и не стали изучать ее свойства. Только Тэетет заметил, что в множестве иррациональных островов есть свой порядок. До одних островов можно добраться из рациональной гавани с помощью линейки и циркуля - за один ход, или за несколько ходов. До других островов так добраться нельзя: по этой причине некоторые задачи на построение неразрешимы. Например, построить биссектрису угла совсем легко; построить правильный пятиугольник гораздо сложнее, а разделить произвольный угол на три равные части не удается. Мы знаем сейчас причину такой разницы: первые две задачи сводятся к решению квадратных уравнений, а трисекция угла требует решения кубического уравнения. Но эллины не знали таких понятий, как многочлен или алгебраическое уравнение. Они не владели даже позиционной системой счисления. Без такого аппарата греческая арифметика (в отличие от геометрии) не имела опоры в наглядном воображении ученых, и не могла помочь геометрии при решении ее самых трудных задач [18].

1.5 Математическая вселенная Евклида

По сравнению с Платоном и его современниками, следующему поколению математиков пришлось жить в ином мире. В 338 году до н.э. царь Филипп Македонский разгромил ополчение греческих полисов; кончилась эпоха демократии, началась имперская эпоха. Поэтому в новых греческих столицах на Востоке сразу появились общедоступные библиотеки, а при них - первые "научно-исследовательские институты". Самым известным учреждением этого рода стал Музей ("храм всех муз") в Александрии Египетской. Здесь собрались сильнейшие ученые грекоязычного мира, и начался новый расцвет науки. Самое заметное различие в положении науки "при царях" и "при демократии" - в том, что достижения ученых перестали волновать столичную толпу. Наука (как и политика) сделалась "спортом для избранных", хотя школьников продолжали учить геометрии и арифметике.

Если бы Евклид захотел только создать хороший школьный учебник - он легко достиг бы этой цели. Но через сто лет его имя забылось бы, заслоненное именами новых авторов. Мы знаем, что получилось иначе: книга Евклида прожила 20 веков, прежде чем у нее появились достойные соперницы. Дело в том, что Евклид сумел навести порядок во всем мире идеальных математических объектов - подобно тому, как Пифагор наводил порядок в реальном мире с помощью идеальных понятий. И пока "зоопарк" этих понятий не расширился более чем вдвое по сравнению с эпохой Евклида - не было нужды в иных книгах на ту же тему. Только в конце 18 века Эйлер добавил к "Началам" Евклида свои "Основы" - первую энциклопедию новой алгебры и математического анализа [6].

Евклид родился в Афинах, учился в Академии. В начале 3 века до н.э. переехал в Александрию и там работал в Музее. Наверняка у него было много учеников. Но никто не оставил об учителе таких сочных рассказов, какие сохранились о Платоне или Аристотеле. Известно лишь, что на вопрос царя Птолемея: нельзя ли попроще объяснить содержание геометрии тем, кто не силен в этой науке? - Евклид резко ответил: "В геометрии нет царской дороги!" [4].

Рискованно делать глубокие выводы из одной фразы; но ясно, что Аристотель никогда не говорил таких слов царю Филиппу Македонскому. Возможно, Евклид был демократ по убеждению и не одобрял того факта, что геометрия стала "придворной" наукой? Может быть, не случайно он употребил слова "царская дорога"? Так называли систему отличных дорог, проложенных в Персидской империи. Двигаясь по ним, небольшая армия македонцев за 4 года покорила весь Ближний Восток. Покорила - но не освоила; науку же нужно осваивать, а не покорять! Таков, видимо, был смысл выговора, сделанного греческим ученым египетскому царю.

Евклид ввел ПОСТУЛАТЫ: это утверждения о свойствах основных геометрических конструкций. Например: "Через две точки проходит лишь одна прямая", или "Через точку вне прямой на плоскости проходит лишь одна прямая, не пересекающая эту прямую". Это последнее утверждение называют пятым постулатом Евклида [8].

Конечно, представить всю геометрию в виде идеального здания из определений, аксиом, постулатов и теорем Евклид не сумел. Ведь каждое необходимое утверждение кому-то покажется скучной мелочью, а каждое интересное утверждение у кого-нибудь вызовет возражение. И это хорошо: в науке важнее всего те утверждения, которые сами интересны и не очевидны, и их отрицания обладают тем же свойством. Таков оказался пятый постулат Евклида о параллельных прямых на плоскости.

Он имеет два возможных отрицания. Во-первых, можно предположить, что через точку вне прямой не проходит НИ ОДНА прямая, не пересекающая данную прямую; то есть, что параллельных прямых на плоскости вовсе нет! Во-вторых, можно предположить, что таких прямых через одну точку проходит НЕСКОЛЬКО; может быть, их бесконечно много. Евклид не рассматривал такие возможности. Он старался сжато и полно описать единственно возможный ("плоский") геометрический мир. Только в 19 веке другие математики - Гаусс и Лобачевский, Больяи и Риман - задумались о возможном существовании многих разных геометрических миров. Тогда выяснилось, что новые миры отличаются от старого евклидова мира всего одной-двумя аксиомами. Достаточно заменить пятый постулат Евклида одним из его возможных отрицаний - и мы попадаем в иной мир, носящий имя Лобачевского или Римана [12].

Евклида больше беспокоило другое. Какие факты геометрии нужно вкючить в создаваемую энциклопедию, а какими придется пренебречь, поскольку они не совсем ясны? Например, в "Началах" используются всего две разные линии - прямая и окружность. Но в эпоху Евклида уже были известны эллипс, парабола и гипербола. Сам Евклид изучал эти кривые, даже написал о них особую книгу (которая не сохранилась - но послужила основой для сходной книги Аполлонии.

В арифметике Евклид сделал три значительных открытия. Во-первых, он сформулировал (без доказательства) теорему о делении с остатком. Во-вторых, он придумал "алгоритм Евклида" - быстрый способ нахождения наибольшего общего делителя чисел или общей меры отрезков (если они соизмеримы). Наконец, Евклид первый начал изучать свойства простых чисел - и доказал, что их множество бесконечно. Но правда ли, что любое целое число разлагается в произведение простых чисел единственным способом? Доказать это Евклид не сумел - хотя располагал всеми необходимыми для этого средствами. Только через 5 веков после Евклида александриец Диофант заполнил этот пробел строгим рассуждением. Он уже владел понятием отрицательного числа и "играл в арифметику" так же уверенно, как семью веками раньше Пифагор "играл в геометрию", работая с плоскими фигурами. Но создать богатую теорию чисел и уравнений эллины не успели вплоть до гибели Римской империи и гибели античной цивилизации в бурях 4-5 веков.

1.6 Наследники Евклида: Эратосфен и Архимед

Напротив, в привычной геометрии эллины успели продвинуться заметно дальше Евклида. Третий век до н.э. украшен славными именами Аристарха и Архимеда, Эратосфена и Аполлония. Все они были скорее универсалы, чем "чистые" математики. Аристарха считают астрономом, поскольку он первый обосновал гипотезу о том, что все планеты обращаются вокруг Солнца. Но рассуждение Аристарха - это чистая стереометрия, в духе Анаксагора.

Разница в том, что Аристарх изначально предположил: Солнце может иметь иной размер, чем Луна! Так в старой задаче появилась новая неизвестная величина. Чтобы справиться с нею, нужно добавить еще одно уравнение, а для этого - изобрести новый метод наблюдения небес. Аристарх сделал это, рассуждая просто и красиво [7].

Эти оценки так же грубы, как расчеты Анаксагора. Но верен главный вывод Аристарха: Солнце больше Земли, поэтому Земля вращается вокруг Солнца! Так астрономия получила, наконец, от геометрии верную модель Солнечной системы. Увы - модель Аристарха оказалась слишком груба для астрономических предсказаний. Поэтому большинство звездочетов не верили ей, а пользовались более могучей вычислительной техникой Гиппарха.

Большее доверие вызывал у своих современников ученик Аристарха - Эратосфен. Он жил в 276-194 годах до н.э. и многие годы возглавлял Александрийский Музей. Ученики дали ему прозвище "Бета" - по имени второй буквы алфавита, поскольку Эратосфен был "вторым специалистом" в очень многих областях. "Альфой" в математике был его лучший друг и ровесник - Архимед из Сиракуз (280-212 годы до н.э.)

В арифметике Эратосфен стал вторым гроссмейстером - после Евклида. Он составил первую таблицу простых чисел ("решето Эратосфена") и заметил, что многие простые числа группируются в пары близнецов: таковы 11 и 13, 29 и 31, 41 и 43. Евклид доказал, что множество всех простых чисел бесконечно. Верно ли то же самое для чисел-близнецов? Эта задача не покорилась Эратосфену. Знать бы ему и его насмешливым питомцам, что она не будет решена даже через 22 столетия! В наши дни "проблема близнецов" остается единственной не решенной задачей, которая досталась нам от Античности. Справятся ли с нею математики 21 века?

В стереометрии Эратосфен был более удачлив. Он составил карту неба с 675 звездами, вычислив их координаты в градусах (Этот способ численного хранения геометрической информации изобрел Евдокс). Далее последовала карта известных Эратосфену областей Земли: от Британии до Цейлона, от Балтики и Каспия до Эфиопии. Оставалось узнать размер земного шара и его положение по отношению к Солнцу - то есть, угол наклона земной оси к той плоскости, в которой движутся Земля и Солнце. То и другое Эратосфен сумел рассчитать на основе несложных наблюдений и простых картинок. Например, для определения радиуса Земли оказалось достаточно узнать расстояние от Александрии до Сиены (Асуана) и измерить высоту Солнца в полдень одновременно в этих двух городах (которые они лежат на одном меридиане).

Успешно проверив географию с помощью геометрии, Эратосфен решил проверить историю с помощью арифметики. Он знал, что от эпохи Пифагора и Фалеса его отделяют примерно 300 лет. Эратосфен был уверен, что все природные факты можно упорядочить с помощью здравого смысла и строгой математики. В датировке Троянской войны он ошибся менее чем на сто лет! Так что были основания для веры во всемогущество точных наук у ученых Александрийской эпохи...

Гения в науке можно распознать по тому, как быстро он осваивает достижения предшественников и как неудержимо бросается вперед с этого стартового рубежа. Для Архимеда стартовыми опорами стали Евклид и Евдокс. Высшим достижением Евдокса была геометрическая теория чисел, которая привела к построению числового луча из точек. Высшее достижение Евклида - это вычисление объема пирамиды методом "исчерпания", когда фигура разбивается на тонкие ломтики-призмы, а их объемы суммируются с помощью арифметики.

Сопоставив эти две теории, Архимед понял, что любую плоскую или пространственную фигуру можно разбить на мельчайшие области-песчинки (как Евдокс разбил на точки луч), а потом суммировать площади или объемы песчинок, как Евклид суммировал объемы ломтиков пирамиды. При этом арифметика и геометрия работают, как две руки - передавая задачу из ладони в ладонь, пока она не будет решена. Конечно, это трудное ремесло - даже два разных ремесла; но Архимеду то и другое было по плечу.

1.7 Закат греческой математики

Во 2 веке до н.э. расцвет греческой науки прекратился. Это было неизбежно: толпу на улицах имперских столиц теперь волновали совсем иные проблемы, чем квадратура круга или движение Марса среди звезд. Математика стала игрой для избранных, и приток талантливой молодежи в ряды ученых сократился. Поэтому уменьшилось число крупных астрономов и геометров, живущих одновременно и побуждающих друг друга к новым открытиям. Теперь юноши постигали науку по книгам, а не по лекциям или письмам действующих исследователей. Эти книги годами или десятилетиями пылились в библиотеках в ожидании достойного читателя. Так исчезло могучее ученое сообщество Эллады; осталась редкая россыпь гениев, не способных жить без научного творчества и способных заниматься им в одиночку.

Самый яркий представитель этого поколения - Гиппарх из Никеи - жил между 190 и 120 годами до н.э. В юности он побывал в Александрии - но не встретил там великих ученых и поселился на острове Родос, построив там астрономическую обсерваторию. Через полвека после смерти Архимеда Гиппарх принял его дело в свои руки. Но подход Гиппарха к математике был несколько иным. Он не придавал большого значения геометрическим построениям и доказательствам, а старался по возможности заменить их расчетами. Так Гиппарх заложил основы алгебры и алгебраической (то есть, вычислительной) астрономии. Это было за 1000 лет до появления слова "алгебра" и за 700 лет до изобретения позиционной записи чисел.

Начал Гиппарх с составления новой карты звездного неба. Используя угловые координаты звезд (введенные Евдоксом), Гиппарх сравнил свою карту с теми, которые были составлены в Афинах и Александрии на два века раньше. Оказалось, что за это время все звезды сдвинулись в одну сторону на один и тот же малый угол. Значит, звездное небо обращается вокруг Земли не равномерно - либо сама Земля вращается вокруг своей оси не равномерно, а покачиваясь, подобно волчку! Итак, сложное движение звезд разлагается в сумму двух равномерных вращений по окружности. Может быть, и планеты движутся так же - но еще сложнее? Попробуем разложить их наблюдаемое движение среди звезд в сумму нескольких равномерных вращений с разными центрами!

Гиппарх был великий вычислитель: он попробовал это сделать, и у него получилось. Так в науке появилась модель эпициклов. Согласно ей, каждая планета укреплена на некой сфере, которая катится по другой сфере, та - по третьей... и так далее, а центр последней сферы равномерно вращается вокруг Земли. Например, для Венеры и Меркурия хватает одного эпицикла: они обращаются вокруг Солнца, а вместе с ним вокруг Земли. Но для Марса, Юпитера и Сатурна требуется несколько промежуточных эпициклов: их центры не отмечены на небе какими-либо яркими точками.

Ответ на второй вопрос математики получили лишь в начале 19 века - когда Шарль Фурье разложил любую периодическую функцию в ряд Фурье из синусов и косинусов. Оказалось, что Гиппарх делал то же самое: он разлагал периодическое движение планет в сумму равномерных круговых движений. Но Гиппарх довольствовался конечным набором слагаемых, обеспечивающим достаточную точность расчетов и предсказаний.

Оценки размеров Солнца и Луны, полученные Аристархом, также не убеждали Гиппарха. Но проверить их стоило - и Гиппарх занялся этим, используя простые геометрические соображения. Эратосфен вычислил диаметр Земли. Находясь на ее поверхности и вращаясь вместе с нею, астроном в течение ночи сдвигается на расстояние, близкое к земному диаметру. Из-за этого смещения астроному кажется, что близкая к нему Луна сдвигается на фоне далеких звезд. При этом одни звезды (заслоненные "вечерней" Луной) становятся видимы ближе к утру, а другие - наоборот. Имея карту неба с точными координатами около 1000 звезд, Гиппарх сумел измерить кажущийся сдвиг Луны за ночь, а вместе с ним - и отношение расстояния до Луны к земному диаметру [24].

Оно равно 30: таков был первый успех вычислительной астрономии в измерении космических расстояний. Следующий крупный успех - измерение расстояний до планет - пришел к астрономам лишь в 17 веке, после появления телескопов и точных маятниковых часов. А для будущей алгебры Гиппарх оставил другое ценное наследство: первые таблицы длин хорд, стягивающих дуги данной угловой меры. Сейчас мы называем их таблицами синусов; но это слово появилось на много веков позже.

Итак, Гиппарх первый подошел к созданию алгебры и тригонометрии. Но основателем алгебры с большей справедливостью можно считать Диофанта из Александрии: он первый начал составлять и решать алгебраические уравнения. Было это в 3 веке н.э. - когда Римская империя переживала первый кризис, а подпольная христианская религия распространилась по всему Средиземноморью. Античная ученость сохранилась лишь на редких островках - вроде Александрийской библиотеки, которая понесла огромный урон еще в 47 году до н.э. Тогда Цезарь пытался возвести Клеопатру на египетский трон; вспыхнула война, пожар уничтожил весь египетский флот и большую часть свитков библиотеки. Но математикам легче восстановить утраченное знание, чем историкам или литераторам. Поэтому в эпоху Диофанта ни одно достижение геометрии еще не было забыто. В арифметике же появилось нечто новoе, неведомое Евклиду и Эратосфену: отрицательные числа.

Диофант уже свободно работал с ними; он знал, что "минус, умноженный на минус, дает плюс". Возможно, что именно он угадал это не очевидное правило - хотя понять его геометрический смысл удалось лишь в 17 веке, когда европейские математики привыкли к комплексным числам. Но понятием нуля и позиционной записью целых чисел Диофант не владел.

Напротив, открытия Гиппарха сохранились не случайно. Ведь астрономия во все века была популярнее математики - ввиду ее родства с неизменно процветающей астрологией. А у Гиппарха нашелся через 300 лет достойный ученик - Клавдий Птолемей. Он составил удачный учебник: "Мегале Математике Синтаксис", где изложил систему Гиппарха со всеми необходимыми обоснованиями. Это пособие приобрело огромную популярность среди астрономов и астрологов, встало вровень с великой книгой Евклида. В переводе с греческого название книги Птолемея звучит: "Правила Великого Учения". Столь длинное название средневековые европейцы сократили до второго слова: Математика, или "Учение". Так мы называем теперь геометрию, арифметику, алгебру и все науки, которые позднее родились на стыке со строгой античной мудростью [25].

Заключение

Античная математика поражает прежде всего красотой и богатством содержания. Многие учёные Нового времени отмечали, что мотивы своих открытий почерпнули у древних. Зачатки анализа заметны у Архимеда, корни алгебры -- у Диофанта, аналитическая геометрия -- у Аполлония и т. д. Но главное даже не в этом. Два достижения греческой математики далеко пережили своих творцов.

Первое -- греки построили математику как целостную науку с собственной методологией, основанной на чётко сформулированных законах логики.

Второе -- они провозгласили, что законы природы постижимы для человеческого разума, и математические модели -- ключ к их познанию.

В этих двух отношениях античная математика вполне современна.

В области чистой математики деятельность учёных последних веков древнего мира (кроме Диофанта) всё более сосредоточивается на комментировании старых авторов. Труды учёных-комментаторов этого времени (Паппа (3 век), Прокла (5 век) и других), при всей их универсальности, не могли уже в обстановке упадка античного мира привести к объединению изолированно развивавшихся алгебры Диофанта, включенной в астрономию тригонометрии, и откровенно нестрогой вычислительной геометрии Герона в единую, способную к большому развитию науку.

Список используемой литературы

1. Асмус В.Ф. Античная философия. - М.: Высшая школа, 1999.

2. Античная наука (http://antic.portal-1.ru/index.html);

3. Башмакова И. Г. Лекции по истории математики в Древней Греции. // Историко-математические исследования. -- М.: Физматгиз, 1958. -- № 11. -- С. 225-440.

...

Подобные документы

  • Особенности периода математики постоянных величин. Создание арифметики, алгебры, геометрии и тригонометрии. Общая характеристика математической культуры Древней Греции. Пифагорейская школа. Открытие несоизмеримости, таблицы Пифагора. "Начала" Евклида.

    презентация [2,4 M], добавлен 20.09.2015

  • Греческая математика. Средние века и Возрождение. Начало современной математики. Современная математика. В основе математики лежит не логика, а здравая интуиция. Проблемы оснований математики являются философскими.

    реферат [32,6 K], добавлен 06.09.2006

  • Робота присвячена важливісті математики, їх використанню у різних галузях науки. Інформація, яка допоможе зацікавити учнів при вивченні математики. Етапи розвитку математики. Філософія числа піфагорійців. Математичні формули у фізиці, хімії, психології.

    курсовая работа [347,2 K], добавлен 12.09.2009

  • Происхождение термина "математика". Одно из первых определений предмета математики Декартом. Сущность математики с точки зрения Колмогорова. Пессимистическая оценка возможностей математики Г Вейля. Формулировка Бурбаки о некоторых свойствах математики.

    презентация [124,5 K], добавлен 17.05.2012

  • История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.

    реферат [38,2 K], добавлен 09.10.2008

  • Роль математики в современном мире. Основные этапы развития математики. Аксиоматический метод построения научной теории. Начала Евклида как образец аксиоматического построения научной теории. История создания неевклидовой геометрии. Стили мышления.

    реферат [25,8 K], добавлен 08.02.2009

  • Геометрия Евклида как первая естественнонаучная теория. Структура современной математики. Основные черты математического мышления. Аксиоматический метод. Принципы аксиоматического построения научных теорий. Математические доказательства.

    реферат [32,4 K], добавлен 10.05.2011

  • Обзор развития европейской математики в XVII-XVIII вв. Неравномерность развития европейской науки. Аналитическая геометрия. Создание математического анализа. Научная школа Лейбница. Общая характеристика науки в XVIII в. Направления развития математики.

    презентация [1,1 M], добавлен 20.09.2015

  • Предпосылки зарождения математики в Древнем Египте. Задачи на вычисление "аха". Наука древних египтян. Задача из папируса Райнда. Геометрия в Древнем Египте. Высказывания великих ученых о важности математики. Значение египетской математики в наше время.

    реферат [18,3 K], добавлен 24.05.2012

  • Достижения древнегреческих математиков, живших в период между VI веком до н.э. и V веком н.э. Особенности начального периода развития математики. Роль пифагорейской школы в развитии математики: Платон, Евдокс, Зенон, Демокрит, Евклид, Архимед, Аполлоний.

    контрольная работа [22,2 K], добавлен 17.09.2010

  • Период зарождения математики (до VII-V вв. до н.э.). Время математики постоянных величин (VII-V вв. до н.э. – XVII в. н.э.). Математика переменных величин (XVII-XIX вв.). Современный период развития математики. Особенности компьютерной математики.

    презентация [2,2 M], добавлен 20.09.2015

  • Развитие математики переменных величин: создание аналитической геометрии, дифференциального и интегрального исчисления. Значение появления книги Декарта "Геометрия" в создании математики переменных величин. Становление математики в ее современном виде.

    реферат [25,9 K], добавлен 30.04.2011

  • Значение математики в нашей жизни. История возникновения счета. Развитие методов вычислительной математики в настоящее время. Использование математики в других науках, роль математического моделирования. Состояние математического образования в России.

    статья [16,2 K], добавлен 05.01.2010

  • Характер давньогрецької математики та джерела. Характер давньогрецької математики та її джерела. Виділення математики в самостійну теоретичну науку. Формулювання теорем про площі і обсяги складних фігур і тіл. Досягнення олександрійських математиків.

    курсовая работа [186,2 K], добавлен 22.11.2011

  • Греческая математика и её философия. Взаимосвязь и совместный путь философии и математики от начала эпохи возрождения до конца XVII века. Философия и математика в эпохе Просвещения. Анализ природы математического познания немецкой классической философии.

    дипломная работа [68,4 K], добавлен 07.09.2009

  • Исторические формы математических открытий. Пифагор: философия числа; дедуктивно-аксиоматический метод; раннее и позднее пифагорейство. Классика греческой науки, "Начала" Евклида. Великие эллины: Евдокс, Платон, Архимед, Птолемей; Александрийская школа.

    дипломная работа [882,4 K], добавлен 08.04.2014

  • Общая характеристика математической культуры древних цивилизаций. Основные хронологические периоды зарождения и развития математики. Особенности математики в Египте, Вавилоне, Индии и Китае в древности. Математическая культура индейцев Мезоамерики.

    презентация [16,3 M], добавлен 20.09.2015

  • Визначення поняття математики через призму іонійського раціоналізму. Основні властивості правильних багатокутників і правильних багатогранників. Загальна характеристика внеску в розвиток головних засад сучасної математики видатних давньогрецьких вчених.

    реферат [91,5 K], добавлен 15.02.2010

  • Классические каноны в живописи, связанные с математикой: изображение человека, расположение предметов, соотношение мелких и крупных предметов. Роль математики в профессии юриста. Обоснование необходимости знаний математики для врачей и воспитателей.

    презентация [2,3 M], добавлен 21.12.2014

  • Поняття та зміст математики як наукового напрямку, предмет та методи її вивчення. Характеристика праць та біографічні відомості вчених. Аналіз потенціальних можливостей вітчизняної науки. Метод радикального сумніву у філософії та механіцизму у фізиці.

    презентация [761,5 K], добавлен 04.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.