Линейное программирование: постановка задач и графическое решение

Формулировка задачи линейного программирования. Особенности задачи линейного программирования, система ограничений которой задана в виде неравенств. Графический метод решения задач данного типа. Определение минимального значения линейной функции.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 11.06.2014
Размер файла 17,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Восточно-Украинский национальный университет имени В. Даля

Реферат

По дисциплине: «Математические методы исследования операций»

На тему: «Линейное программирование: постановка задач и графическое решение»

Выполнил:

Студент 3 курса

Группы: МФЗ-102

Удодов Андрей Николаевич

Луганск 2013

Содержание

Введение

1. Общая задача линейного программирования

1.1 Формулировка задачи

1.2 Геометрическая интерпретация задачи линейного программирования

2. Графический метод решения задачи линейного программирования

2.1 Область применения

2.2 Обобщение графического метода решения задач линейного программирования

Литература

Введение

Линейное программирование - это наука о методах исследования и отыскания наибольших и наименьших значений линейной функции, на неизвестные которой наложены линейные ограничения. Таким образом, задачи линейного программирования относятся к задачам на условный экстремум функции. Казалось бы, что для исследования линейной функции многих переменных на условный экстремум достаточно применить хорошо разработанные методы математического анализа, однако невозможность их использования можно довольно просто проиллюстрировать.

Действительно, путь необходимо исследовать на экстремум линейную функцию

Z = С1х1+С2х2+... +СNxN

при линейных ограничениях

a11x1 + a22x2 + ... + a1NХN = b1

a21x1 + a22x2 + ... + a2NХN = b2

. . . . . . . . . . . . . . .

aМ1x1 + aМ2x2 + ... + aМNХN = bМ

Так как Z - линейная функция, то = Сj (j = 1, 2, ..., n), то все коэффициенты линейной функции не могут быть равны нулю, следовательно, внутри области, образованной системой ограничений, экстремальные точки не существуют. Они могут быть на границе области, но исследовать точки границы невозможно, поскольку частные производные являются константами.

Для решения задач линейного программирования потребовалось создание специальных методов. Особенно широкое распространение линейное программирование получило в экономике, так как исследование зависимостей между величинами, встречающимися во многих экономических задачах, приводит к линейной функции с линейными ограничениями, наложенными на неизвестные.

1. Общая задача линейного программирования

1.1 Формулировка задачи

Даны линейная функция

Z = С1х1+С2х2+... +СNxN

и система линейных ограничений

a11x1 + a22x2 + ... + a1NХN = b1

a21x1 + a22x2 + ... + a2NХN = b2

. . . . . . . . . . . . . . .

ai1x1 + ai2x2 + ... + aiNХN = bi

. . . . . . . . . . . . . . .

aM1x1 + aM2x2 + ... + aMNХN = bM

xj 0 (j = 1, 2, ... ,n)

где аij, Ьj и Сj - заданные постоянные величины.

Найти такие неотрицательные значения х1, х2, ..., хn, которые удовлетворяют системе ограничений (1.2) и доставляют линейной функции (1.1)минимальное значение.

Общая задача имеет несколько форм записи.

Векторная форма записи. Минимизировать линейную функцию Z = СХ при ограничениях

А1х1 + А2x2 + ... + АNxN = Ао, X 0

где С = (с1, с2, ..., сN); Х = (х1, х2, ..., хN); СХ - скалярное произведение; векторы

A1, A2,..., AN, A0

состоят соответственно из коэффициентов при неизвестных и свободных членах.

Матричная форма записи. Минимизировать линейную функцию, Z = СХ при ограничениях АХ = А0, Х 0, где С = (с1, с2, ..., сN) - матрица-cтрока; А = (аij) - матрица системы;

Х - матрица-столбец, А0 - матрица-столбец

Запись с помощью знаков суммирования. Минимизировать линейную функцию Z = Сjхj при ограничениях

0пределение 1. Планом или допустимым решением задачи линейного программирования называется Х = (х1, х2, ..., хN), удовлетворяющий условиям (1.2) и (1.3).

0пределение 2. План Х = (х1, х2, ..., хN) называется опорным, если векторы А (i = 1, 2, ..., N), входящие в разложение (1.4) с положительными коэффициентами х , являются линейно независимыми.

Так как векторы А являются N-мерными, то из определения опорного плана следует, что число его положительных компонент не может превышать М.

0пределение 3. Опорный план называется невырожденным, если он содержит М положительных компонент, в противном случае опорный план называется вырожденным.

0пределение 4. Оптимальным планом или оптимальным решением задачи линейного программирования называется план, доставляющий наименьшее (наибольшее) значение линейной функции.

В дальнейшем рассмотрено решение задач линейного программирования, связанных с нахождением минимального значения линейной функции. Там, где необходимо найти максимальное значение линейной функции, достаточно заменить на противоположный знак линейной функции и найти минимальное значение последней функции. Заменяя на противоположный знак полученного минимального значения, определяем максимальное значение исходной линейной функции.

1.2 Геометрическая интерпретация задачи линейного программирования

Рассмотрим задачу линейного программирования, система ограничений которой задана в виде неравенств.

Найти минимальное значение линейной функции

Z = С1х1+С2х2+... +СNxN

при ограничениях

a11x1 + a22x2 + ... + a1NХN b1

a21x1 + a22x2 + ... + a2NХN b2

. . . . . . . . . . . . . .

aM1x1 + aM2x2 + ... + aMNХN bM

xj 0 (j = 1, 2, ... ,n)

Совокупность чисел х1, х2, ..., хN, удовлетворяющих ограничениям (1.6) и (1.7), называется решением. Если система неравенств (1.6) при условии (1.7) имеет хотя бы одно решение, она называется совместной, в противном случае - несовместной.

Рассмотрим на плоскости х1Ох2 совместную систему линейных неравенств

a11x1 + a22x2 b1

a21x1 + a22x2 b2

. . . . . . . .

aM1x1 + aM2x2 bM

x1 0, x2 0

Это все равно, что в системе (1.6) - (1.7) положить N=2. Каждое неравенство этой системы геометрически определяет полуплоскость с граничной прямой

ai1x1 + ai2x2 = bi ,(i = 1, 2, ..., m)

Условия неотрицательности определяют полуплоскости соответственно с граничными прямыми х = 0, х = 0. Система совместна, поэтому полуплоскости, как выпуклые множества, пересекаясь, образуют общую часть, которая является выпуклым множеством и представляет собой совокупность точек, координаты каждой из которых являются решением данной системы (рис. 1.1).

Совокупность этих точек (решений) назовем многоугольником решений. Он может быть точкой, отрезком, лучом, много-угольником, неограничен-ной многоугольной облас-тью.

Если в системе ограничений (1.6) - (1.7) n = 3, то каждое нера-венство геометрически представляет полупространство трехмерного пространства, граничная плоскость которого ai1x1 + ai2x2 + ai3x3 = bi ,(i = 1, 2, ..., n), а условия неотрицательности - полупрост-ранства с граничными плоскостями соответственно хj = 0 (j = 1, 2, 3). Если система ограничений совместна, то эти полупространства, как выпуклые множества, пересекаясь, образуют в трехмерном пространстве общую часть, которая называется многогранником решений. Многогранник решений может быть точкой, отрезком, лучом, многоугольником, многогранником, многогранной неограниченной областью. Пусть в системе ограничений (1.6) - (1.7) n 3; тогда каждое неравенство определяет полупространство n-мерного пространства с граничной гиперплоскостью ai1x1 + ai2x2 + aiNxN = bi (i = 1, 2, ..., m), а условия неотрицательности - полупространства с граничными гиперплоскостями хj 0 (j = 1, 2, ..., n).

Если система ограничений совместна, то по аналогии с трехмерным пространством она образует общую часть n-мерного пространства, называемую многогранником решений, так как координаты каждой его точки являются решением.

Таким образом, геометрически задача линейного программирования представляет собой отыскание такой точки многогранника решений, координаты которой доставляют линейной функции минимальное значение, причем допустимыми решениями служат все точки многогранника решений.

2. Графический метод решения задачи линейного программирования

2.1 Область применения

Графический метод основан на геометрической интерпретации задачи линейного программирования и применяется в основном при решении задач двумерного пространства и только некоторых задач трехмерного простран6тва, так как довольно трудно построить многогранник решений, который образуется в результате пересечения полупространств. Задачу пространства размерности больше трех изобразить графически вообще невозможно.

Пусть задача линейного программирования задана в двумерном пространстве, т. е. ограничения содержат две переменные.

Найти минимальное значение функции

Z = С1х1+С2х2

a11x1 + a22x2 b1

a21x1 + a22x2 b2

. . . . . . . .

aM1x1 + aM2x2 bM

х1 0, х2 0

Допустим, что система (2.2) при условии (2.3) совместна и ее многоугольник решений ограничен. Каждое из неравенств (2.2) и (2.3), как отмечалось выше, определяет полуплоскость с граничными прямыми: ai1x1 + ai2x2 + ai3x3 = bi,(i = 1, 2, ..., n), х1=0, х2=0. Линейная функция (2.1) при фиксированных значениях Z является уравнением прямой линии: С1х1 + С2х2 = const. Построим многоугольник решений системы ограничений (2.2) и график линейной функции (2.1) при Z = 0 (рис. 2.1). Тогда поставленной задаче линейного прграммирования можно дать следующую интерпретацию. Найти точку многоугольника решений, в которой прямая С1х1 + С2х2 = const опорная и функция Z при этом достигает минимума.

Значения Z = С1х1 + С2х2 возрастают в направлении вектора N =(С1, С2), поэтому прямую Z = 0 передвигаем параллельно самой себе в направлении вектора Х. Из рис. 2.1 следует, что прямая дважды становится опорной по отношению к многоугольнику решений (в точках А и С), причем минимальное значение принимает в точке А. Координаты точки А (х1, х2) находим, решая систему уравнений прямых АВ и АЕ.

Если многоугольник решений представляет собой неограниченную многоуголь-ную область, то возможны два случая.

Случай 1. Прямая С1х1 + С2х2 = const, передвигаясь в направлении вектора N или противоположно ему, постоянно пересекает многоугольник решений и ни в какой точке не является опорной к нему. В этом случае линейная функция не ограничена на многоугольнике решений как сверху, так и снизу (рис. 2.2).

Случай 2. Прямая, пере-двигаясь, все же становится опорной относительно многоу-гольника решений (рис. 2.2, а - 2.2, в). Тогда в зави-симости от вида области ли-нейная функция может быть ограниченной сверху и неограниченной снизу (рис. 2.2, а), ограниченной снизу и неограниченной сверху (рис. 2.2, б), либо ограниченной как снизу, так и сверху (рис. 2.2, в).

2.3 Обобщение графического метода решения задач линейного программирования

Вообще, с помощью графического метода может быть решена задача линейного программирования, система ограничений которой содержит n неизвестных и m линейно независимых уравнений, если N и M связаны соотношением N - M = 2.

Действительно, пусть поставлена задача линейного программирования.

Найти минимальное значение линейной функции Z = С1х1+С2х2+... +СNxN при ограничениях

a11x1 + a22x2 + ... + a1NХN = b1

(2.3)a21x1 + a22x2 + ... + a2NХN = b2

. . . . . . . . . . . . . . .

aМ1x1 + aМ2x2 + ... + aМNХN = bМ

xj 0 (j = 1, 2, ..., N)

где все уравнения линейно независимы и выполняется cоотношение N - M = 2.

Используя метод Жордана-Гаусса, производим M исключений, в результате которых базисными неизвестными оказались, например, M первых неизвестных х1, х2, ..., хM, а свободными - два последних: хМ+1, и хN, т. е. система ограничений приняла вид

x1 + a1,М+1xМ+1 + a1NХN = b1

x2 + a2,М+1xМ+1 + a2NХN = b2

. . . . . . . . . . . .

xМ + aМ, М+1x2 + aМNХN = bМ

xj 0 (j = 1, 2, ..., N)

задача линейное программирование

С помощью уравнений преобразованной системы выражаем линейную функцию только через свободные неизвестные и, учитывая, что все базисные неизвестные - неотрицательные: хj 0 (j = 1, 2, ..., M), отбрасываем их, переходя к системе ограничений, выраженных в виде неравенств. Таким образом, окончательно получаем следующую задачу.

Найти минимальное значение линейной функции

Z = СМ+1хМ+1+СNxN при ограничениях

a1,М+1xМ+1 + a1NХN b1

a2,М+1xМ+1 + a2NХN b2

. . . . . . . . . .

aМ,М+1xМ+1 + aМNХN bМ

xМ+1 0, хN 0

Преобразованная задача содержит два неизвестных; решая ее графическим методом, находим оптимальные значения xМ+1 и хN, а затем, подставляя их в (2.4), находим оптимальные значения х1, х2, ..., хM.

Литература

1. Математические методы анализа экономики /под ред. А.Я.Боярского. М.,Изд-во Моск. Ун-та, 1983

2. А.И.Ларионов, Т.И.Юрченко “Экономико-математические методы в планировании: Учебник - М.: Высш.школа, 1984

3. Ашманов С.А. “Линейное программирование”,- М.: 1961

Размещено на Allbest.ru

...

Подобные документы

  • Общее понятие вектора и векторного пространства, их свойства и дополнительные структуры. Графический метод в решении задачи линейного программирования, его особенности и область применения. Примеры решения экономических задач графическим способом.

    курсовая работа [1,2 M], добавлен 14.11.2010

  • Сущность линейного программирования. Изучение математических методов решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейной целевой функцией. Нахождение точек наибольшего или наименьшего значения функции.

    реферат [162,8 K], добавлен 20.05.2019

  • Понятие линейного программирования и его основные методы. Формулировка задачи линейного программирования в матричной форме и ее решение различными методами: графическим, табличным, искусственного базиса. Особенности решения данной задачи симплекс-методом.

    курсовая работа [65,3 K], добавлен 30.11.2010

  • Графическое решение задачи линейного программирования. Общая постановка и решение двойственной задачи (как вспомогательной) М-методом, правила ее формирования из условий прямой задачи. Прямая задача в стандартной форме. Построение симплекс таблицы.

    задача [165,3 K], добавлен 21.08.2010

  • Сущность понятия "симплекс-метод". Математические модели пары двойственных задач линейного программирования. Решение задачи симплексным методом: определение минимального значения целевой функции, построение первого опорного плана, матрица коэффициентов.

    курсовая работа [219,4 K], добавлен 17.04.2013

  • Решение систем уравнений по правилу Крамера, матричным способом, с использованием метода Гаусса. Графическое решение задачи линейного программирования. Составление математической модели закрытой транспортной задачи, решение задачи средствами Excel.

    контрольная работа [551,9 K], добавлен 27.08.2009

  • Обыкновенные и модифицированные жордановы исключения. Последовательность решения задач линейного программирования симплекс-методом применительно к задаче максимизации: составлении опорного плана решения, различные преобразования в симплекс-таблице.

    курсовая работа [37,2 K], добавлен 01.05.2011

  • Понятие и виды задач математического линейного и нелинейного программирования. Динамическое программирование, решение задачи средствами табличного процессора Excel. Задачи динамического программирования о выборе оптимального распределения инвестиций.

    курсовая работа [126,5 K], добавлен 21.05.2010

  • Задача целочисленного линейного программирования, приведение к канонической форме. Общие идеи методов отсечения. Алгоритм Гомори для решения целочисленных задач линейного программирования. Понятие правильного отсечения и простейший способ его построения.

    курсовая работа [67,5 K], добавлен 25.11.2011

  • Статистический подход к измерению правовой информации. Графический метод решения задач линейного программирования. Методика решения задач линейного программирования графическим методом. Количество информации как мера неопределенности состояния системы.

    контрольная работа [79,4 K], добавлен 04.06.2010

  • Знакомство с особенностями построения математических моделей задач линейного программирования. Характеристика проблем составления математической модели двойственной задачи, обзор дополнительных переменных. Рассмотрение основанных функций новых переменных.

    задача [656,1 K], добавлен 01.06.2016

  • Геометрический смысл решений неравенств, уравнений и их систем. Определение понятия двойственности с помощью преобразования Лежандра. Разбор примеров нахождения переменных или коэффициентов при неизвестных в целевой функции двойственной задачи.

    дипломная работа [2,6 M], добавлен 30.04.2011

  • Поиск экстремума функций при наличии ограничений типа неравенств; история возникновения, становления и перспективы линейного программирования. Практическое применение методов Канторовича. Количество информации и требования к коммуникационным системам.

    реферат [30,5 K], добавлен 18.01.2014

  • Линейное программирование как наиболее разработанный и широко применяемый раздел математического программирования. Понятие и содержание симплекс-метода, особенности и сферы его применения, порядок и анализ решения линейных уравнений данным методом.

    курсовая работа [197,1 K], добавлен 09.04.2013

  • Общая формулировка задания на курсовой проект. Линейное программирование. Задача целочисленного линейного программирования, с булевскими переменными. Нелинейное программирование. Задача поиска глобального экстремума функции.

    курсовая работа [506,1 K], добавлен 17.05.2006

  • Форма для ввода целевой функции и ограничений. Характеристика симплекс-метода. Процесс решения задачи линейного программирования. Математическое описание алгоритма симплекс-метода. Решение задачи ручным способом. Описание схемы алгоритма программы.

    контрольная работа [66,3 K], добавлен 06.04.2012

  • Определение допустимого решения задачи линейного программирования методом введения искусственного базиса. Целочисленное линейное программирование с булевскими переменными. Поиск минимума функции методом градиентного спуска. Одномерная минимизация.

    курсовая работа [281,7 K], добавлен 27.05.2013

  • Симплексный метод как универсальное решение задач линейного программирования. Применение метода Жордана-Гаусса для системы линейных уравнений в канонической форме. Опорное решение системы ограничений. Критерий оптимальности. Задача канонической формы.

    презентация [2,0 M], добавлен 11.04.2013

  • История зарождения и создания линейного программирования. Транспортная задача. Общая постановка, цели, задачи. Основные типы, виды моделей. Методы составления начального опорного плана. Понятие потенциала и цикла. Задача, двойственная к транспортной.

    курсовая работа [166,7 K], добавлен 17.07.2002

  • Составление математической модели задачи. Определение всевозможных способов распила 5-метровых бревен на брусья 1,5, 2,4, 3,2 в отношении 1:2:3 так, чтобы минимизировать общую величину отходов. Решение задачи линейного программирования симплекс-методом.

    задача [26,1 K], добавлен 27.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.