Матрицы и определители

Полная и сокращенная запись квадратной и прямоугольной матрицы, понятие вектора. Основные виды операций, производимых над матрицей: транспонирование, произведение на матрицу и на число, сумма. Свойства определителей, их разложение по строке или столбцу.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 16.06.2014
Размер файла 36,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство Образования и молодёжной политики Ставропольского края

Реферат по математике на тему:

"Матрицы и определители"

Железноводск, 2013

Матрицы. Операции над матрицами

Прямоугольной матрицей размера m x n называется совокупность mn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Мы будем записывать матрицу в виде

A = (4.1)

или сокращенно в виде A = (aij) (i = ; j = ). Числа aij, составляющие данную матрицу, называются ее элементами; первый индекс указывает на номер строки, второй - на номер столбца. Две матрицы A = (aij) и B = (bij) одинакового размера называются равными, если попарно равны их элементы, стоящие на одинаковых местах, то есть A = B, если aij = bij.

Матрица, состоящая из одной строки или одного столбца, называется соответственно вектор-строкой или вектор-столбцом. Вектор-столбцы и вектор-строки называют просто векторами.

Матрица, состоящая из одного числа, отождествляется с этим числом. Матрица размера m x n, все элементы которой равны нулю, называются нулевой матрицей и обозначается через 0. Элементы матрицы с одинаковыми индексами называют элементами главной диагонали. Если число строк матрицы равно числу столбцов, то есть m = n, то матрицу называют квадратной порядка n. Квадратные матрицы, у которых отличны от нуля лишь элементы главной диагонали, называются диагональными матрицами и записываются так:

.

Если все элементы aii диагональной матрицы равны 1, то матрица называется единичной и обозначается буквой Е:

E = .

Квадратная матрица называется треугольной, если все элементы, стоящие выше (или ниже) главной диагонали, равны нулю. Транспонированием называется такое преобразование матрицы, при котором строки и столбцы меняются местами с сохранением их номеров. Обозначается транспонирование значком Т наверху.

Пусть дана матрица (4.1). Переставим строки со столбцами. Получим матрицу

AT = ,

которая будет транспонированной по отношению к матрице А. В частности, при транспонировании вектора-столбца получается вектор-строка и наоборот.

Произведением матрицы А на число л называется матрица, элементы которой получаются из соответствующих элементов матрицы А умножением на число л: лA = ( лaij).

Суммой двух матриц А = (aij) и B = (bij) одного размера называется матрица C = (cij) того же размера, элементы которой определяются по формуле cij = aij + bij.

Произведение АВ матрицы А на матрицу В определяется в предположении, что число столбцов матрицы А равно числу строк матрицы В.

Произведением двух матриц А = (aij) и B = (bjk), где i = , j= , k= , заданных в определенном порядке АВ, называется матрица С = (cik), элементы которой определяются по следующему правилу:

cik = ai1b1k + ai2b2k + ... + aimbmk = aisbsk. (4.2)

Иначе говоря, элементы матрицы-произведения определяются следующим образом: элемент i-й строки и k-го столбца матрицы С равен сумме произведений элементов i-й строки матрицы А на соответствующие элементы k-го столбца матрицы В.

2. Определители

Перестановкой чисел 1, 2,..., n называется любое расположение этих чисел в определенном порядке. В элементарной алгебре доказывается, что число всех перестановок, которые можно образовать из n чисел, равно 12...n = n!. Например, из трех чисел 1, 2, 3 можно образовать 3!=6 перестановок: 123, 132, 312, 321, 231, 213. Говорят, что в данной перестановке числа i и j составляют инверсию (беспорядок), если i > j, но i стоит в этой перестановке раньше j, то есть если большее число стоит левее меньшего.

Перестановка называется четной (или нечетной), если в ней соответственно четно (нечетно) общее число инверсий. Операция, посредством которой от одной перестановки переходят к другой, составленной из тех же n чисел, называется подстановкой n-ой степени.

Подстановка, переводящая одну перестановку в другую, записывается двумя строками в общих скобках, причем числа, занимающие одинаковые места в рассматриваемых перестановках, называются соответствующими и пишутся одно под другим. Например, символ обозначает подстановку, в которой 3 переходит в 4, 1>2, 2>1, 4>3. Подстановка называется четной (или нечетной), если общее число инверсий в обеих строках подстановки четно (нечетно). Всякая подстановка n-ой степени может быть записана в виде ,т.е. с натуральным расположением чисел в верхней строке.

Пусть нам дана квадратная матрица порядка n

. (4.3)

Рассмотрим все возможные произведения по n элементов этой матрицы, взятых по одному и только по одному из каждой строки и каждого столбца, т.е. произведений вида:

, (4.4)

где индексы q1, q2,..., qn составляют некоторую перестановку из чисел

1, 2,..., n. Число таких произведений равно числу различных перестановок из n символов, т.е. равно n!. Знак произведения (4.4) равен (- 1)q, где q - число инверсий в перестановке вторых индексов элементов.

Определителем n -го порядка, соответствующим матрице (4.3), называется алгебраическая сумма n! членов вида (4.4). Для записи определителя употребляется символ A = или

det A=

(детерминант, или определитель, матрицы А).

Свойства определителей

1. Определитель не меняется при транспонировании.

2. Если одна из строк определителя состоит из нулей, то определитель равен нулю.

3. Если в определителе переставить две строки, определитель поменяет знак.

4. Определитель, содержащий две одинаковые строки, равен нулю.

5. Если все элементы некоторой строки определителя умножить на некоторое число k, то сам определитель умножится на k.

6. Определитель, содержащий две пропорциональные строки, равен нулю.

7. Если все элементы i-й строки определителя представлены в виде суммы двух слагаемых aij = bj + cj(j = ), то определитель равен сумме определителей, у которых все строки, кроме i-ой, - такие же, как в заданном определителе, а i-я строка в одном из слагаемых состоит из элементов bj, в другом - из элементов cj.

8. Определитель не меняется, если к элементам одной из его строк прибавляются соответствующие элементы другой строки, умноженные на одно и то же число.

Замечание. Все свойства остаются справедливыми, если вместо строк взять столбцы.

Минором Mij элемента aij определителя d n-го порядка называется определитель порядка n-1, который получается из d вычеркиванием строки и столбца, содержащих данный элемент.

Алгебраическим дополнением элемента aij определителя d называется его минор Mij, взятый со знаком (-1)i+j. Алгебраическое дополнение элемента aij будем обозначать Aij. Таким образом, Aij = (-1)i+j+ Mij.

Способы практического вычисления определителей, основанные на том, что определитель порядка n может быть выражен через определители более низких порядков, дает следующая теорема.

Теорема (разложение определителя по строке или столбцу).

Определитель равен сумме произведений всех элементов произвольной его строки (или столбца) на их алгебраические дополнения. Иначе говоря, имеет место разложение d по элементам i-й строки

матрица вектор определитель транспонирование

d = ai1Ai1 + ai2Ai2 +... + ainAin (i = )

или j- го столбца

d = a1jA1j + a2jA2j +... + anjAnj (j = ).

В частности, если все элементы строки (или столбца), кроме одного, равны нулю, то определитель равен этому элементу, умноженному на его алгебраическое дополнение.

3. Ранг матрицы

Рассмотрим прямоугольную матрицу (4.1). Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k-го порядка. Определитель этой матрицы называется минором k-го порядка матрицы А. Очевидно, что матрица А обладает минорами любого порядка от 1 до наименьшего из чисел m и n. Среди всех отличных от нуля миноров матрицы А найдется по крайней мере один минор, порядок которого будет наибольшим. Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы А равен r, то это означает, что в матрице А имеется отличный от нуля минор порядка r, но всякий минор порядка, большего чем r, равен нулю. Ранг матрицы А обозначается через r(A). Очевидно, что выполняется соотношение

0 ? r(A) ? min (m,n).

Ранг матрицы находится либо методом окаймления миноров, либо методом элементарных преобразований. При вычислении ранга матрицы первым способом следует переходить от миноров низших порядков к минорам более высокого порядка. Если уже найден минор D k-го порядка матрицы А, отличный от нуля, то требуют вычисления лишь миноры (k+1)-го порядка, окаймляющие минор D, т.е. содержащие его в качестве минора. Если все они равны нулю, то ранг матрицы равен k.

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными, если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.

Канонической матрицей называется матрица, у которой в начале

главной диагонали стоят подряд несколько единиц (число которых

может равняться нулю), а все остальные элементы равны нулю,

например,

.

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

4. Обратная матрица

Рассмотрим квадратную матрицу

A = .

Обозначим Д = det A.

Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если Д = 0.

Квадратная матрица В называется обратной для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.

Теорема. Для того, чтобы матрица А имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

Матрица, обратная матрице А, обозначается через А-1, так что В = А-1. Обратная матрица вычисляется по формуле

А-1 = 1/Д , (4.5)

где Аij - алгебраические дополнения элементов aij.

Вычисление обратной матрицы по формуле (4.5) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить обратную матрицу с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ее ранга можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.

Размещено на Allbest.ru

...

Подобные документы

  • Основные операции над матрицами и их свойства. Произведение матриц или перемножение матриц. Блочные матрицы. Понятие определителя. Панель инструментов Матрицы. Транспонирование. Умножение. Определитель квадратной матрицы. Модуль вектора.

    реферат [109,2 K], добавлен 06.04.2003

  • Понятие, типы и алгебра матриц. Определители квадратной матрицы и их свойства, теоремы Лапласа и аннулирования. Понятие обратной матрицы и ее единственность, алгоритм построения и свойства. Определение единичной матрицы только для квадратных матриц.

    реферат [296,6 K], добавлен 12.06.2010

  • Понятие и типы матриц. Определители (детерминанты) квадратной матрицы и их свойства. Алгебраические действия над матрицами. Теоремы Лапласа и аннулирования. Понятие и свойства обратной матрицы, алгоритм ее построения. Единственность обратной матрицы.

    курс лекций [336,5 K], добавлен 27.05.2010

  • Понятие матрицы, прямоугольная матрица размера m x n - совокупность mn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Численная характеристика квадратной матрицы - ее определитель. Действия над матрицами, ранг матрицы.

    реферат [87,2 K], добавлен 01.08.2009

  • Прямоугольная таблица, составленная из чисел или матрица. Произвольная квадратная матрица, ее численная характеристика (определитель). Определители первого и второго порядка. Понятие минора элемента матрицы. Свойства определителей, транспонирование.

    реферат [56,8 K], добавлен 19.08.2009

  • Размеры прямоугольной, квадратной, диагональной, скалярной матриц. Линейные операции над матрицами. Умножение строки на столбец (скалярное произведение). Транспонирование матрицы, ее элементы. Образование треугольной таблицы, состоящей из строк, столбцов.

    презентация [1,4 M], добавлен 03.12.2016

  • Правила произведения матрицы и вектора, нахождения обратной матрицы и ее определителя. Элементарные преобразования матрицы: умножение на число, прибавление, перестановка и удаление строк, транспонирование. Решение системы уравнений методом Гаусса.

    контрольная работа [462,6 K], добавлен 12.11.2010

  • Понятие матрицы и линейные действия над ними. Свойства операции сложения матриц. Определители второго и третьего порядков. Применение правила Саррюса. Основные методы решения определителей. Элементарные преобразования матрицы. Свойства обратной матрицы.

    учебное пособие [223,0 K], добавлен 04.03.2010

  • Понятие матрицы, ее ранга, минора, использование при действиях с векторами и изучении систем линейных уравнений. Квадратная и прямоугольная матрица. Элементарные преобразования матрицы. Умножение матрицы на число. Класс диагональных матриц, определители.

    реферат [102,8 K], добавлен 05.08.2009

  • Применение матриц и их виды (равные, квадратные, диагональные, единичные, нулевые, вектор-строка, вектор-столбец). Примеры действий над матрицами (умножение на число, сложение, вычитание, умножение и транспонирование матриц) и свойства полученных матриц.

    презентация [74,7 K], добавлен 21.09.2013

  • Определение собственного вектора матрицы как результата применения линейного преобразования, задаваемого матрицей (умножения вектора на собственное число). Перечень основных действий и описание структурной схемы алгоритма метода Леверрье-Фаддеева.

    презентация [55,2 K], добавлен 06.12.2011

  • Общие определения, связанные с понятием матрицы. Действия над матрицами. Определители 2-го и 3-го порядков, порядка n, порядок их вычисления и характерные свойства. Обратные матрицы и их ранг. Понятие и этапы элементарного преобразования матрицы.

    лекция [30,2 K], добавлен 14.12.2010

  • Расчет показателей матрицы, ее определителя по строке и столбцу. Решение системы уравнений методом Гаусса, по формулам Крамера, с помощью обратной матрицы. Вычисление предела без использования правила Лопиталя. Частные производные второго порядка функции.

    контрольная работа [95,0 K], добавлен 23.02.2012

  • Изучение понятий, действий (сумма, разность, произведение), свойств квадратной матрицы. Определение и признаки ранга матрицы. Анализ методов окаймляющих миноров и преобразований. Расчет системы линейных уравнений согласно методам Крамера и матричному.

    реферат [178,9 K], добавлен 01.02.2010

  • Понятие обратной матрицы. Пошаговое определение обратной матрицы: проверка существования квадратной и обратной матрицы, расчет определителя и алгебраического дополнения, получение единичной матрицы. Пример расчета обратной матрицы согласно алгоритма.

    презентация [54,8 K], добавлен 21.09.2013

  • Понятие ранга матрицы. Модель Леонтьева многоотраслевой экономики. Свойства скалярного произведения. Разложение вектора по координатным осям. Минор и алгебраическое дополнение. Определители второго и третьего порядка. Плоскость и прямая в пространстве.

    курс лекций [3,0 M], добавлен 30.10.2013

  • Особенности дифференциального исчисления. Использование правила Коши при разложении в ряд функций cos x и sin x для перемножения рядов. Запись элементов бесконечной матрицы в форме последовательности. Абсолютная сходимость рядов, порождаемых матрицей.

    курсовая работа [1012,0 K], добавлен 06.08.2013

  • Понятие равных матриц, их суммы и произведения. Нахождение элемента матрицы, свойства ее произведения. Расположение вне главной диагонали элементов квадратной матрицы. Понятие обратной матрицы, матричные уравнения. Теорема о базисном миноре, ранг матрицы.

    реферат [105,3 K], добавлен 21.08.2009

  • Понятие "матрица" в математике. Операция умножения (деления) матрицы любого размера на произвольное число. Операция и свойства умножения двух матриц. Транспонированная матрица – матрица, полученная из исходной матрицы с заменой строк на столбцы.

    контрольная работа [26,2 K], добавлен 21.07.2010

  • Определение матрицы, характеристика основных ее видов. Правила транспонирования матриц. Элементы матрицы-произведения. Свойства определителей, примеры нахождения. Формулировка и следствие теоремы о ранге матрицы. Доказательство теоремы Кронекера-Капелли.

    реферат [60,2 K], добавлен 17.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.