Методы теоретических исследований

Выделение в процессе синтеза знаний существенных связей между исследуемым объектом и окружающей средой как цель теоретических исследований. Общая характеристика математических методов в научных исследованиях. Процесс и обоснование выбора моделей.

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 08.07.2014
Размер файла 64,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Методы теоретических исследований

1. Цели, задачи и стадии теоретических исследований

Целью теоретических исследований является выделение в процессе синтеза знаний существенных связей между исследуемым объектом и окружающей средой, объяснение и обобщение результатов эмпирического исследования, выявление общих закономерностей и их формализация.

Задачами теоретического исследования являются:

обобщение результатов исследования, нахождение общих закономерностей путем обработки и интерпретации опытных данных;

расширение результатов исследования на ряд подобных объектов без повторения всего объема исследований;

изучение объекта, недоступного для непосредственного исследования;

повышение надежности экспериментального исследования объекта (обоснования параметров и условий наблюдения, точности измерений).

Теоретические исследования включают:

анализ физической сущности процессов, явлений;

формулирование гипотезы исследования;

построение (разработка) физической модели;

проведение математического исследования;

анализ теоретических решений;

формулирование выводов.

Если не удается выполнить математическое исследование, то формулируется рабочая гипотеза в словесной форме с привлечением графиков, таблиц и т.д.

В технических науках необходимо стремиться к применению математической формализации выдвинутых гипотез и выводов.

В процессе, теоретических исследований приходится непрерывно ставить и решать разнообразные по типам и сложности задачи в форме противоречий теоретических моделей, требующих разрешения.

Структурно любая задача включает условия и требования (рис. 1.1).

Условия - это определение информационной системы, из которой следует исходить при решении задачи.

Требования - это цель, к которой нужно стремиться в результате решения.

Условия и требования могут быть исходными, привлеченными и исковыми.

Исходные условия даются в первоначальной формулировке задачи (исходные данные). Если их оказывается недостаточно для решения задачи, то исследователь вынужден привлекать новые данные, называемые привлеченными.

Искомые данные или искомые условия - это привлеченные условия, которые требуется отыскать в процессе решения задачи.

Процесс проведения теоретических исследований состоит обычно из нескольких стадий.

Оперативная стадия включает проверку возможности устранения технического противоречия, оценку возможных изменений в среде, окружающей объект, анализ возможности переноса решения задачи из других отраслей знания или использования «прообразов» природы.

Вторая стадия исследования является синтетической, в процессе которой определяется влияние изменения одной части объекта на построение других его частей, определяются необходимые изменения других объектов, работающих совместно с данным, оценивается возможность применения найденной технической идеи при решении других задач.

Рис. 1. Структурные компоненты решения задачи

Выполнение названных предварительных стадий дает возможность приступить к стадии постановки задачи, в процессе которой определяется конечная цель решения задачи, выбирается наиболее эффективный путь ее решения и определяются требуемые количественные показатели.

Постановка задачи является наиболее трудной частью ее решения. Преобразование в начале расплывчатой формулировки задачи в четкую, определенную часто облегчает решение задач.

Аналитическая стадия включает определение идеального конечного результата, выявляются помехи, мешающие получению идеального результата, и их причины, определяются условия, обеспечивающие получение идеального результата с целью найти, при каких условиях исчезнет «помеха».

Теоретическое исследование завершается формированием теории, не обязательно связанной с построением ее математического аппарата. Теория проходит в своем развитии различные стадии от качественного объяснения и количественного измерения процессов до их формализации и в зависимости от стадии может быть представлена как в виде качественных правил, так и в виде математических уравнений (соотношений).

2. Общая характеристика математических методов в научных исследованиях

Решение практических задач математическими методами последовательно осуществляется путем математической формулировки задачи (разработки математической модели), выбора метода проведения исследования полученной математической модели, анализа, полученных результатов.

Математическая формулировка задачи обычно представляется в виде чисел, геометрических образов, функций, систем уравнений и т.д.

Математическая модель представляет собой систему математических соотношений - формул, функций, уравнений, систем уравнений, описывающих те или иные стороны изучаемого объекта, явления, процесса.

На этапе выбора типа математической модели при помощи анализа данных поискового эксперимента устанавливаются: линейность или нелинейность, динамичность или статичность, стационарность или нестационарность, а также степень детерминированности исследуемого объекта или процесса.

Установление общих характеристик объекта позволяет выбрать математический аппарат, на базе которого строится математическая модель. Выбор математического аппарата может быть осуществлен в соответствии со схемой, представленной на рис. 1.2.

Рис. 2. Математический аппарат для построения математической модели

Как видно из данной схемы, выбор математического аппарата не является однозначным и жестким.

Для описания сложных объектов с большим количеством параметров возможно разбиение объекта на элементы (подсистемы), установление иерархии элементов и описание связей между ними на различных уровнях иерархии.

Особое место на этапе выбора вида математической модели занимает описание преобразования входных сигналов в выходные характеристики объекта.

Если на предыдущем этапе было установлено, что объект является статическим, то построение функциональной модели осуществляется при помощи алгебраических уравнений. При этом кроме простейших алгебраических зависимостей используются регрессионные модели и системы алгебраических уравнений.

Если заранее известен характер изменения исследуемого показателя, то число возможных структур алгебраических моделей резко сокращается и предпочтение отдается той структуре, которая выражает наиболее общую закономерность или общеизвестный закон.

Если характер изменения исследуемого показателя заранее неизвестен, то ставится поисковый эксперимент. Предпочтение отдается той математической формуле, которая дает наилучшее совпадение с данными поискового эксперимента.

Результаты поискового эксперимента и априорный информационный массив позволяют установить схему взаимодействия объекта с внешней средой по соотношению входных и выходных величин.

В принципе возможно установление четырех схем взаимодействия:

одномерно-одномерная схема (рис. 1.3, а) - на объект воздействует только один фактор, а его поведение рассматривается по одному показателю (один выходной сигнал);

одномерно-многомерная схема (рис. 1.3 б) - на объект воздействует один фактор, а его поведение оценивается по нескольким показателям;

многомерно-одномерная схема (рис. 1.3, в) - на объект воздействует несколько факторов, а его поведение оценивается по одному показателю;

многомерно-многомерная схема (рис. 1.3, г) - на объект воздействует множество факторов и его поведение оценивается по множеству показателей.

математический модель синтез

Рис. 3. Схемы взаимодействия объекта с внешней средой

Процесс выбора математической модели объекта заканчивается ее предварительным контролем.

При этом осуществляются следующие виды контроля: размерностей; порядков; характера зависимостей; экстремальных ситуаций; граничных условий; математической замкнутости; физического смысла; устойчивости модели.

Контроль размерностей сводится к проверке выполнения правила, согласно которому приравниваться и складываться могут только величины одинаковой размерности.

Контроль порядков направлен на упрощение модели. При этом определяются порядки складываемых величин и явно малозначительные слагаемые отбрасываются.

Контроль характера зависимостей сводится к проверке направления и скорости изменения одних величин при изменении других. Направления и скорость, вытекающие из математической модели, должны соответствовать физическому смыслу задачи.

Контроль экстремальных ситуаций сводится к проверке наглядного смысла решения при приближении параметров модели к нулю или бесконечности.

Контроль граничных условий состоит в том, что проверяется соответствие математической модели граничным условиям, вытекающим из смысла задачи. При этом проверяется, действительно ли граничные условия поставлены и учтены при построении искомой функции и что эта функция на самом деле удовлетворяет таким условиям.

Контроль математической замкнутости сводится к проверке того, что математическая модель дает однозначное решение.

Контроль физического смысла сводится к проверке физического содержания промежуточных соотношении, используемых при построении математической модели.

Контроль устойчивости модели состоит в проверке того, что варьирование исходных данных в рамках имеющихся данных о реальном объекте не приведет к существенному изменению решения.

Размещено на Allbest.ru

...

Подобные документы

  • Процесс выбора или построения модели для исследования определенных свойств оригинала в определенных условиях. Стадии процесса моделирования. Математические модели и их виды. Адекватность математических моделей. Рассогласование между оригиналом и моделью.

    контрольная работа [69,9 K], добавлен 09.10.2016

  • Роль и место учебных исследований в обучении математике. Содержание и методические особенности проектирования учебных исследований по теме "Четырехугольники" на основе использования динамических моделей. Структура учебного исследования по математике.

    курсовая работа [720,9 K], добавлен 28.05.2013

  • Возникновение и развитие теории динамических систем. Развитие методов реконструкции математических моделей динамических систем. Математическое моделирование - один из основных методов научного исследования.

    реферат [35,0 K], добавлен 15.05.2007

  • Приемы построения математических моделей вычислительных систем, отображающих структуру и процессы их функционирования. Число обращений к файлам в процессе решения средней задачи. Определение возможности размещения файлов в накопителях внешней памяти.

    лабораторная работа [32,1 K], добавлен 21.06.2013

  • Теоретические основы учебных исследований по математике с использованием динамических моделей. Содержание динамических чертежей. Гипотезы о свойствах заданной геометрической ситуации. Проектирование процесса обучения геометрии в общеобразовательной школе.

    курсовая работа [241,8 K], добавлен 26.11.2014

  • Анализ математических моделей, линейная система автоматического управления и дифференциальные уравнения, векторно-матричные формы и преобразование структурной схемы. Метод последовательного интегрирования, результаты исследований и единичный импульс.

    курсовая работа [513,2 K], добавлен 08.10.2011

  • Особенности математических моделей и моделирования технического объекта. Применение численных математических методов в моделировании. Методика их применения в системе MathCAD. Описание решения задачи в Mathcad и Scilab, реализация базовой модели.

    курсовая работа [378,5 K], добавлен 13.01.2016

  • Построение модели множественной регрессии теоретических значений динамики ВВП, определение средней ошибки аппроксимации. Выбор фактора, оказывающего большее влияние. Построение парных моделей регрессии. Определение лучшей модели. Проверка предпосылок МНК.

    курсовая работа [352,9 K], добавлен 26.01.2010

  • Определение понятия модели, необходимость их применения в науке и повседневной жизни. Характеристика методов материального и идеального моделирования. Классификация математических моделей (детерминированные, стохастические), этапы процесса их построения.

    реферат [28,1 K], добавлен 20.08.2015

  • Изучение вопросов применения теории множеств, их отношений и свойств и теории графов, а также математических методов конечно-разностных аппроксимаций для описания конструкций РЭА (радиоэлектронной аппаратуры) и моделирования протекающих в них процессов.

    реферат [206,9 K], добавлен 26.09.2010

  • История математизации науки. Основные методы математизации. Пределы и проблемы математизации. Проблемы применения математических методов в различных науках связаны с самой математикой (математическое изучение моделей), с областью моделирования.

    реферат [46,1 K], добавлен 24.05.2005

  • Классическая задача комбинаторики, ее решение "правилом произведения". Реализация реальных связей между объектами в математических терминах на абстрактных множествах. Решение задач на доказательство тождества, особенности решения системы уравнений.

    контрольная работа [58,6 K], добавлен 30.09.2010

  • Рассмотрение философско-математических и логических исследований А.Ф. Лосева, представленных в труде "Хаос и структура", "Философия числа", образованный на стыке двух наук: математики и философии. Учение А.Ф. Лосева об актуализации гилетических чисел.

    курсовая работа [45,1 K], добавлен 20.08.2012

  • Этапы статической обработки результатов экспериментальных исследований. Расчет числа приложения нагрузок от воздушных судов на отдельном участке аэродромного покрытия. Определение статического коэффициента условий работы жестких аэродромных покрытий.

    курсовая работа [329,2 K], добавлен 19.03.2013

  • Принципы маркетинговых исследований. Исследование рынка, конкурентов, потребителей, цены, внутреннего потенциала предприятия. Маркетинговое исследование рынка оконной продукции. Разработка мероприятий для устойчивого положения компании на рынке.

    курсовая работа [2,4 M], добавлен 05.04.2023

  • Структурное преобразование схемы объекта и получение в дифференциальной форме по каналам внешних воздействий. Формы представления вход-выходных математических моделей динамических, звеньев и систем, методов их построения, преобразования и использования.

    курсовая работа [1,3 M], добавлен 09.11.2013

  • Понятие, виды и методы планирования экспериментальных исследований. Предварительная обработка экспериментальных данных, компьютерные методы статистической обработки и анализ результатов пассивного эксперимента, оценка погрешностей результатов наблюдений.

    книга [3,1 M], добавлен 13.04.2009

  • Основные теоремы и понятия дифференциального исчисления, связи между свойствами функции и её производных (или дифференциалов); применение математических методов в естествознании и технике. Решение уравнений и неравенств с помощью теорем Ролля и Лагранжа.

    курсовая работа [609,9 K], добавлен 09.12.2011

  • Теория игр – раздел математики, предметом которого является изучение математических моделей принятия оптимальных решений в условиях конфликта. Итеративный метод Брауна-Робинсона. Монотонный итеративный алгоритм решения матричных игр.

    дипломная работа [81,0 K], добавлен 08.08.2007

  • Сущность линейного программирования. Изучение математических методов решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейной целевой функцией. Нахождение точек наибольшего или наименьшего значения функции.

    реферат [162,8 K], добавлен 20.05.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.