Задача коммивояжера в комбинаторике и пути их решения

Понятие комбинаторной конфигурации. Способы решения задачи коммивояжера. Погрешность деревянного алгоритма. Метод ветвей и границ. Выбор алгоритма решения. Анализ методов решения задачи коммивояжера, определение области их эффективного действия.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 23.08.2014
Размер файла 355,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Задача коммивояжера

Введение

Комбинаторика - раздел математики, посвящённый решению задач выбора и расположения элементов некоторого, обычно конечного множества в соответствии с заданными правилами.

Каждое такое правило определяет способ построения некоторой конструкции из элементов исходного множества, называемой комбинаторной конфигурацией. Поэтому можно сказать, что целью комбинаторного анализа является изучение комбинаторных конфигураций. Это изучение включает в себя вопросы существования комбинаторных конфигураций, алгоритмы их построения, оптимизацию таких алгоритмов, а также решение задач перечисления, в частности определение числа конфигураций данного класса. Простейшим примером комбинаторных конфигураций являются перестановки, сочетания и размещения.

Большой вклад в систематическое развитие комбинаторных методов был сделан Г. Лейбницем (диссертация «Комбинаторное искусство»), Я. Бернулли (работа «Искусство предположений»), Л. Эйлером. Можно считать, что с появлением работ Я. Бернулли и Г. Лейб-ница комбинаторные методы выделились в самостоятельную часть математики. В работах Л.Эйлера по разбиениям и композициям натуральных чисел на слагаемые было положено начало одному из основных методов перечисления комбинаторных конфигураций - методу производящих функций.

Возвращение интереса к комбинаторному анализу относится к 50-м годам ХХ в. в связи с бурным развитием кибернетики и дискретной математики и широким использованием электронно-вычислительной техники. В этот период активизировался интерес к классическим комбинаторным задачам. Классические комбинаторные задачи - это задачи выбора и расположения элементов конечного множества, имеющие в качестве исходной некоторую формулировку развлекательного содержания типа головоломок.

Рис.1

В 1859 г. У. Гамильтон придумал игру «Кругосветное путешествие», состоящую в отыскании такого пути, проходящего через все вершины (города, пункты назначения) графа, изображенного на рис. 1, чтобы посетить каждую вершину однократно и возвратиться в исходную. Пути, обладающие таким свойством, называются гамильтоновыми циклами.

Задача о гамильтоновых циклах в графе получила различные обобщения. Одно из этих обобщений - задача коммивояжера, имеющая ряд применений в исследовании операций, в частности при решении некоторых транспортных проблем.

1. Задача коммивояжера

Общее описание

Задача коммивояжера (в дальнейшем сокращённо - ЗК) является одной из знаменитых задач теории комбинаторики. Она была поставлена в 1934 году, и об неё, как об Великую теорему Ферма обламывали зубы лучшие математики. В своей области (оптимизации дискретных задач) ЗК служит своеобразным полигоном, на котором испытываются всё новые методы.

Постановка задачи следующая.

Коммивояжер (бродячий торговец) должен выйти из первого города, посетить по разу в неизвестном порядке города 2,1,3..n и вернуться в первый город. Расстояния между городами известны. В каком порядке следует обходить города, чтобы замкнутый путь (тур) коммивояжера был кратчайшим?

Чтобы привести задачу к научному виду, введём некоторые термины. Итак, города перенумерованы числами j?Т=(1,2,3..n). Тур коммивояжера может быть описан циклической перестановкой t=(j1,j2,..,jn,j1), причём все j1..jn - разные номера; повторяющийся в начале и в конце j1, показывает, что перестановка зациклена. Расстояния между парами вершин Сij образуют матрицу С. Задача состоит в том, чтобы найти такой тур t, чтобы минимизировать функционал

Относительно математизированной формулировки ЗК уместно сделать два замечания.

Во-первых, в постановке Сij означали расстояния, поэтому они должны быть неотрицательными, т.е. для всех j?Т:

Сij 0; Cjj=?(2)

(последнее равенство означает запрет на петли в туре), симметричными, т.е. для всех i,j:

Сij= Сji.(3)

и удовлетворять неравенству треугольника, т.е. для всех:

Сij+ Сjk Cik(4)

В математической постановке говорится о произвольной матрице. Сделано это потому, что имеется много прикладных задач, которые описываются основной моделью, но всем условиям (2)-(4) не удовлетворяют. Особенно часто нарушается условие (3) (например, если Сij - не расстояние, а плата за проезд: часто туда билет стоит одну цену, а обратно - другую). Поэтому мы будем различать два варианта ЗК: симметричную задачу, когда условие (3) выполнено, и несимметричную - в противном случае. Условия (2)-(4) по умолчанию мы будем считать выполненными.

Второе замечание касается числа всех возможных туров. В несимметричной ЗК все туры t=(j1,j2,..,jn,j1) и t'=(j1,jn,..,j2,j1) имеют разную длину и должны учитываться оба. Разных туров очевидно (n-1)!.

Зафиксируем на первом и последнем месте в циклической перестановке номер j1, а оставшиеся n-1 номеров переставим всеми (n-1)! возможными способами. В результате получим все несимметричные туры. Симметричных туров имеется в два раз меньше, т.к. каждый засчитан два раза: как t и как t'.

Можно представить, что С состоит только из единиц и нулей. Тогда С можно интерпретировать, как граф, где ребро (i,j) проведено, если Сij=0 и не проведено, если Сij=1. Тогда, если существует тур длины 0, то он пройдёт по циклу, который включает все вершины по одному разу. Такой цикл называется гамильтоновым циклом. Незамкнутый гамильтонов цикл называется гамильтоновой цепью (гамильтоновым путём).

В терминах теории графов симметричную ЗК можно сформулировать так:

Дана полная сеть с n вершинами, длина ребра (i,j)= Сij. Найти гамильтонов цикл минимальной длины.

В несимметричной ЗК вместо «цикл» надо говорить «контур», а вместо «ребра» - «дуги» или «стрелки».

Некоторые прикладные задачи формулируются как ЗК, но в них нужно минимизировать длину не гамильтонова цикла, а гамильтоновой цепи. Такие задачи называются незамкнутыми. Некоторые модели сводятся к задаче о нескольких коммивояжерах, но мы здесь их рассматривать не будем.

1.1 Способы решения ЗК

Задачу комивояжера можно решить используя следующие методы:

1) Жадный алгоритм - алгоритм нахождения наикратчайшего расстояния путём выбора самого короткого, ещё не выбранного ребра, при условии, что оно не образует цикла с уже выбранными рёбрами. «Жадным» этот алгоритм назван потому, что на последних шагах приходится жестоко расплачиваться за жадность.

Рис.2

Посмотрим, как поведет себя при решении ЗК жадный алгоритм. Здесь он превратится в стратегию «иди в ближайший (в который еще не входил) город». Жадный алгоритм, очевидно, бессилен в этой задаче. Рассмотрим для примера сеть на рис. 2, представляющую узкий ромб. Пусть коммивояжер стартует из города 1. Алгоритм «иди вы ближайший город» выведет его в город 2, затем 3, затем 4; на последнем шаге придется платить за жадность, возвращаясь по длинной диагонали ромба. В результате получится не кратчайший, а длиннейший тур.

В пользу процедуры «иди в ближайший» можно сказать лишь то, что при старте из одного города она не уступит стратегии «иди в дальнейший».

Как видим, жадный алгоритм ошибается. Можно ли доказать, что он ошибается умеренно, что полученный им тур хуже минимального, положим, в 1000 раз? Мы докажем, что этого доказать нельзя, причем не только для жадного логарифма, а для алгоритмов гораздо более мощных. Но сначала нужно договориться, как оценивать погрешность неточных алгоритмов, для определенности, в задаче минимизации. Пусть fB - настоящий минимум, а fA - тот квазиминимум, который получен по алгоритму. Ясно, что fA/ fB?1, но это - тривиальное утверждение, что может быть погрешность. Чтобы оценить её, нужно зажать отношение оценкой сверху:

fA/fB ?1+ nе, (5)

где, как обычно в высшей математике, е?0, но, против обычая, может быть очень большим. Величина е и будет служить мерой погрешности. Если алгоритм минимизации будет удовлетворять неравенству (5), мы будем говорить, что он имеет погрешность е.

Предположим теперь, что имеется алгоритм А решения ЗК, погрешность которого нужно оценить. Возьмем произвольный граф G (V,E) и по нему составим входную матрицу ЗК:

С[i,j]={

1,если ребро (i,j) принадлежит Е

1+nе в противном случае

Если в графе G есть гамильтонов цикл, то минимальный тур проходит по этому циклу и fB = n. Если алгоритм А тоже всегда будет находить этот путь, то по результатам алгоритма можно судить, есть ли гамильтонов цикл в произвольном графе. Однако, непереборного алгоритма, который мог бы ответить, есть ли гамильтонов цикл в произвольном графе, до сих пор никому не известно. Таким образом, наш алгоритм А должен иногда ошибаться и включать в тур хотя бы одно ребро длины 1+nе. Но тогда fA?(n-1)+(1+nе) так что fA/fB=1+nе т.е. превосходит погрешность е на заданную неравенством (5). О величине е в нашем рассуждении мы не договаривались, так что е может быть произвольно велик.

Таким образом доказана следующая теорема.

Либо алгоритм А определяет, существует ли в произвольном графе гамильтонов цикл, либо погрешность А при решении ЗК может быть произвольно велика.

Это соображение было впервые опубликовано Сани и Гонзалесом в 1980 г. Теорема Сани-Гонзалеса основана на том, что нет никаких ограничений на длину ребер. Теорема не проходит, если расстояния подчиняются неравенству треугольника (4).

Рис.3 и Рис.4

Если оно соблюдается, можно предложить несколько алгоритмов с погрешностью 12. Прежде, чем описать такой алгоритм, следует вспомнить старинную головоломку. Можно ли начертить одной линией открытый конверт? Рис.2 показывает, что можно (цифры на отрезках показывают порядок их проведения). Закрытый конверт (рис.3.) одной линией нарисовать нельзя и вот почему. Будем называть линии ребрами, а их перекрестья - вершинами.

Когда через точку проводится линия, то используется два ребра - одно для входа в вершину, одно - для выхода. Если степень вершины нечетна - то в ней линия должна начаться или кончиться. На рис. 3 вершин нечетной степени две: в одной линия начинается, в другой - кончается. Однако на рис. 4 имеется четыре вершины степени три, но у одной линии не может быть четыре конца. Если же нужно прочертить фигуру одной замкнутой линией, то все ее вершины должны иметь четную степень.

Верно и обратное утверждение: если все вершины имеют четную степень, то фигуру можно нарисовать одной незамкнутой линией. Действительно, процесс проведения линии может кончиться, только если линия придет в вершину, откуда уже выхода нет: все ребра, присоединенные к этой вершине (обычно говорят: инцидентные этой вершине), уже прочерчены. Если при этом нарисована вся фигура, то нужное утверждение доказано; если нет, удалим уже нарисованную часть G'. После этого от графа останется одна или несколько связных компонент; пусть G' - одна из таких компонент. В силу связности исходного графа G, G' и G'' имеют хоть одну общую вершину, скажем, v. Если в G'' удалены какие-то ребра, то по четному числу от каждой вершины. Поэтому G'' - связный и все его вершины имеют четную степень. Построим цикл в G'' (может быть, не нарисовав всего G'') и через v добавим прорисованную часть G'' к G'. Увеличивая таким образом прорисованную часть G', мы добьемся того, что G' охватит весь G.

Эту задачу когда-то решил Эйлер, и замкнутую линию, которая покрывает все ребра графа, теперь называю эйлеровым циклом. По существу была доказана следующая теорема.

Эйлеров цикл в графе существует тогда и только тогда, когда (1) граф связный и (2) все его вершины имеют четные степени.

2) Алгоритм Дейкстры.

Одним из вариантов решения ЗК является вариант нахождения кратчайшей цепи, содержащей все города. Затем полученная цепь дополняется начальным городом - получается искомый тур.

Можно предложить много процедур решения этой задачи, например, физическое моделирование. На плоской доске рисуется карта местности, в города, лежащие на развилке дорог, вбиваются гвозди, на каждый гвоздь надевается кольцо, дороги укладываются верёвками, которые привязываются к соответствующим кольцам. Чтобы найти кратчайшее расстояние между i и k, нужно взять I в одну руку и k в другую и растянуть. Те верёвки, которые натянутся и не дадут разводить руки шире и образуют кратчайший путь между i и k. Однако математическая процедура, которая промоделирует эту физическую, выглядит очень сложно. Известны алгоритмы попроще. Один из них - алгоритм Дейкстры, предложенный Дейкстрой ещё в 1959г. Этот алгоритм решает общую задачу:

В ориентированной, неориентированной или смешанной (т. е. такой, где часть дорог имеет одностороннее движение) сети найти кратчайший путь между двумя заданными вершинами.

Алгоритм использует три массива из n (= числу вершин сети) чисел каждый. Первый массив a содержит метки с двумя значениями: 0 (вершина ещё не рассмотрена) и 1 (вершина уже рассмотрена); второй массив b содержит расстояния - текущие кратчайшие расстояния от vi до соответствующей вершины; третий массив c содержит номера вершин - k-й элемент ck есть номер предпоследней вершины на текущем кратчайшем пути из vi в vk. Матрица расстояний Dik задаёт длины дуг dik; если такой дуги нет, то dik присваивается большое число Б, равное «машинной бесконечности».

3) Деревянный алгоритм.

Теперь можно обсудить алгоритм решения ЗК через построение кратчайшего остовного дерева. Для краткости будет называть этот алгоритм деревянным.

Вначале обсудим свойство спрямления. Рассмотрим какую-нибудь цепь, например, на рис.5. Если справедливо неравенство треугольника, то d[1,3]?d[1,2]+d[2,3] и d[3,5]?d[3,4]+d[4,5]. Сложив эти два неравенства, получим d[1,3]+d[3,5]?d[1,2]+d[2,3]+d[3,4]+d[4,5]. По неравенству треугольника получим. d[1,5]?d[1,3]+d[3,5]. Окончательно

d[1,5] d[1,2]+d[2,3]+d[3,4]+d[4,5]

Итак, если справедливо неравенство треугольника, то для каждой цепи верно, что расстояние от начала до конца цепи меньше (или равно) суммарной длины всех ребер цепи. Это обобщение расхожего убеждения, что прямая короче кривой.

Вернемся к ЗК и опишем решающий ее деревянный алгоритм.

Построим на входной сети ЗК кратчайшее остовное дерево и удвоим все его ребра. Получим граф G - связный и с вершинами, имеющими только четные степени.

Построим эйлеров цикл G, начиная с вершины 1, цикл задается перечнем вершин.

Просмотрим перечень вершин, начиная с 1, и будем зачеркивать каждую вершину, которая повторяет уже встреченную в последовательности. Останется тур, который и является результатом алгоритма.

Пример 1. Дана полная сеть, показанная на рис.5. Найти тур жадным и деревянным алгоритмами.

Рис 5.

Матрица смежности

Таблица1

-

1

2

3

4

5

6

1

-

6

4

8

7

14

2

6

-

7

11

7

10

3

4

7

-

4

3

10

4

8

11

4

-

5

11

5

7

7

3

5

-

7

6

14

10

10

11

7

-

Рис.6

Решение. Жадный алгоритм (иди в ближайший город из города 1) дает тур 1-(4)-3-(3)-5(5)-4-(11)-6-(10)-2-(6)-1, где без скобок показаны номера вершин, а в скобках - длины ребер. Длина тура равна 39, тур показана на рис. 5.

2. Деревянный алгоритм вначале строит остовное дерево, показанное на рис. 6 штриховой линией, затем эйлеров цикл 1-2-1-3-4-3-5-6-5-3-1, затем тур 1-2-3-4-5-6-1 длиной 43, который показан сплошной линией на рис. 6.

Теорема. Погрешность деревянного алгоритма равна 1.

Доказательство. Возьмем минимальный тур длины fB и удалим из него максимальное ребро. Длина получившейся гамильтоновой цепи LHC меньше fB. Но эту же цепь можно рассматривать как остовное дерево, т. к. эта цепь достигает все вершины и не имеет циклов. Длина кратчайшего остовного дерева LMT меньше или равна LHC. Имеем цепочку неравенств

fB>LHC LMT(6)

Но удвоенное дерево - оно же эйлеров граф - мы свели к туру посредством спрямлений, следовательно, длина полученного по алгоритму тура удовлетворяет неравенству

2LMT>fA(7)

Умножая (6) на два и соединяя с (7), получаем цепочку неравенств

2fB>2LHC?2LMT?fA (8)

Т.е. 2fB>fA, т.е. fA/fB>1+?; ?=1.

Теорема доказана.

Таким образом, мы доказали, что деревянный алгоритм ошибается менее, чем в два раза. Такие алгоритмы уже называют приблизительными, а не просто эвристическими.

Известно еще несколько простых алгоритмов, гарантирующих в худшем случае =1. Для того, чтобы найти среди них алгоритм поточнее, зайдем с другого конца и для начала опишем «brute-force enumeration» - «перебор животной силой», как его называют в англоязычной литературе. Понятно, что полный перебор практически применим только в задачах малого размера. Напомним, что ЗК с n городами требует при полном переборе рассмотрения (n-1)!/2 туров в симметричной задаче и (n-1)! Туров в несимметричной, а факториал, как показано в следующей таблице, растет удручающе быстро:

5!

10!

15!

20!

25!

30!

35!

40!

45!

50!

~102

~106

~1012

~1018

~10125

~1032

~1040

~1047

~1056

~1064

Чтобы проводить полный перебор в ЗК, нужно научиться (разумеется, без повторений) генерировать все перестановки заданного числа m элементов. Это можно сделать несколькими способами, но самый распространенный (т.е. приложимый для переборных алгоритмов решения других задач) - это перебор в лексикографическом порядке.

Пусть имеется некоторый алфавит и наборы символов алфавита (букв), называемые словами. Буквы в алфавите упорядочены: например, в русском алфавите порядок букв а?б?я (символ ? читается «предшествует)». Если задан порядок букв, можно упорядочить и слова. Скажем, дано слово u=(u1,u2,..,um) - состоящее из букв u1,u2,..,um - и слово v =(v1,v2,..,vb). Тогда если u1?v1, то и u?v, если же u1=v1, то сравнивают вторые буквы и т.д. Этот порядок слов и называется лексикографическим. Поэтому в русских словарях (лексиконах) слово «абажур» стоит раньше слова «абака». Слово «бур» стоит раньше слова «бура», потому что пробел считается предшествующим любой букве алфавита.

Рассмотрим, скажем, перестановки из пяти элементов, обозначенных цифрами 1..5. Лексикографически первой перестановкой является 1-2-3-4-5, второй - 1-2-3-5-4, …, последней - 5-4-3-2-1. Нужно осознать общий алгоритм преобразования любой перестановки в непосредственно следующую.

Правило такое: скажем, дана перестановка 1-3-5-4-2. Нужно двигаться по перестановке справа налево, пока впервые не увидим число, меньшее, чем предыдущее (в примере это 3 после 5). Это число, Pi-1 надо увеличить, поставив вместо него какое-то число из расположенных правее, от Pi до Pn. Число большее, чем Pi-1, несомненно, найдется, так как Pi-1< Pi . Если есть несколько больших чисел, то, очевидно, надо ставить меньшее из них. Пусть это будет Pj,j>i-1. Затем число Pi-1 и все числа от Pi до Pn, не считая Pj нужно упорядочить по возрастанию. В результате получится непосредственно следующая перестановка, в примере - 1-4-2-3-5. Потом получится 1-4-2-5-3 (тот же алгоритм, но упрощенный случай) и т.д.

Нужно понимать, что в ЗК с n городами не нужны все перестановки из n элементов. Потому что перестановки, скажем, 1-3-5-4-2 и 3-5-4-2-1 (последний элемент соединен с первым) задают один и тот же тур, считанный сперва с города 1, а потом с города 3. Поэтому нужно зафиксировать начальный город 1 и присоединять к нему все перестановки из остальных элементов. Этот перебор даст (n-1)! разных туров, т.е. полный перебор в несимметричной ЗК (мы по-прежнему будем различать туры 1-3-5-4-2 и 1-2-4-5-3).

Данный алгоритм описан на языке Паскаль (см. Приложения).

Пример 2. Решим ЗК, поставленную в Примере 1 лексикографическим перебором. Приведенная выше программа напечатает города, составляющие лучший тур: 1-2-6-5-4-3 и его длину 36.

Желательно усовершенствовать перебор, применив разум. В следующем пункте описан алгоритм, который реализует простую, но широко применимую и очень полезную идею.

4) Метод ветвей и границ

К идее метода ветвей и границ приходили многие исследователи, но Литтл с соавторами на основе указанного метода разработали удачный алгоритм решения ЗК и тем самым способствовали популяризации подхода. С тех пор метод ветвей и границ был успешно применен ко многим задачам, для решения ЗК было придумано несколько других модификаций метода, но в большинстве учебников излагается пионерская работа Литтла.

Общая идея тривиальна: нужно разделить огромное число перебираемых вариантов на классы и получить оценки (снизу - в задаче минимизации, сверху - в задаче максимизации) для этих классов, чтобы иметь возможность отбрасывать варианты не по одному, а целыми классами. Трудность состоит в том, чтобы найти такое разделение на классы (ветви) и такие оценки (границы), чтобы процедура была эффективной.

Изложим алгоритм Литтла на примере 1 предыдущего раздела.. Повторно запишем матрицу:

Таблица 2

-

1

2

3

4

5

6

1

-

6

4

8

7

14

2

6

-

7

11

7

10

3

4

7

-

4

3

10

4

8

11

4

-

5

11

5

7

7

3

5

-

7

6

14

10

10

11

7

-

Таблица 3

-

1

2

3

4

5

6

1

-

2

0

4

3

10

2

0

-

1

5

1

4

3

1

4

-

1

0

7

4

4

7

0

-

1

7

5

4

4

0

2

-

4

6

7

3

3

4

0

-

Таблица 4

-

1

2

3

4

5

6

1

-

0

0

3

3

6

2

0

-

1

4

1

0

3

1

2

-

0

0

3

4

4

5

0

-

1

3

5

4

2

0

1

-

0

6

7

1

3

3

0

-

2

1

4

Нам будет удобнее трактовать Сij как стоимость проезда из города i в город j. Допустим, что добрый мэр города j издал указ выплачивать каждому въехавшему в город коммивояжеру 5 долларов. Это означает, что любой тур подешевеет на 5 долларов, поскольку в любом туре нужно въехать в город j. Но поскольку все туры равномерно подешевели, то прежний минимальный тур будет и теперь стоить меньше всех. Добрый же поступок мэра можно представить как уменьшение всех чисел j-го столбца матрицы С на 5. Если бы мэр хотел спровадить коммивояжеров из j-го города и установил награду за выезд в размере 10 долларов, это можно было бы выразить вычитанием 10 из всех элементов j-й той строки. Это снова бы изменило стоимость каждого тура, но минимальный тур остался бы минимальным. Итак, доказана следующая лемма.

Вычитая любую константу из всех элементов любой строки или столбца матрицы С, мы оставляем минимальный тур минимальным.

Для алгоритма нам будет удобно получить побольше нулей в матрице С, не получая там, однако, отрицательных чисел. Для этого мы вычтем из каждой строки ее минимальный элемент (это называется приведением по строкам, см. табл. 3), а затем вычтем из каждого столбца матрицы, приведенной по строкам, его минимальный элемент, получив матрицу, приведенную по столбцам, см. табл. 4).

Прочерки по диагонали означают, что из города i в город i ходить нельзя. Заметим, что сумма констант приведения по строкам равна 27, сумма по столбцам 7, сумма сумм равна 34.

Тур можно задать системой из шести подчеркнутых (выделенных другим цветом) элементов матрицы С, например, такой, как показано на табл. 2. Подчеркивание элемента означает, что в туре из i-го элемента идут именно в j-тый. Для тура из шести городов подчеркнутых элементов должно быть шесть, так как в туре из шести городов есть шесть ребер. Каждый столбец должен содержать ровно один подчеркнутый элемент (в каждый город коммивояжер въехал один раз), в каждой строке должен быть ровно один подчеркнутый элемент (из каждого города коммивояжер выехал один раз); кроме того, подчеркнутые элементы должны описывать один тур, а не несколько меньших циклов. Сумма чисел подчеркнутых элементов есть стоимость тура. На табл. 2 стоимость равна 36, это тот минимальный тур, который получен лексикографическим перебором.

Теперь будем рассуждать от приведенной матрицы на табл. 2. Если в ней удастся построить правильную систему подчеркнутых элементов, т.е. систему, удовлетворяющую трем вышеописанным требованиям, и этими подчеркнутыми элементами будут только нули, то ясно, что для этой матрицы мы получим минимальный тур. Но он же будет минимальным и для исходной матрицы С, только для того, чтобы получить правильную стоимость тура, нужно будет обратно прибавить все константы приведения, и стоимость тура изменится с 0 до 34. Таким образом, минимальный тур не может быть меньше 34. Мы получили оценку снизу для всех туров.

Теперь приступим к ветвлению. Для этого проделаем шаг оценки нулей. Рассмотрим нуль в клетке (1,2) приведенной матрицы. Он означает, что цена перехода из города 1 в город 2 равна 0. А если мы не пойдем из города 1 в город 2? Тогда все равно нужно въехать в город 2 за цены, указанные во втором столбце; дешевле всего за 1 (из города 6). Далее, все равно надо будет выехать из города 1 за цену, указанную в первой строке; дешевле всего в город 3 за 0. Суммируя эти два минимума, имеем 1+0=1: если не ехать «по нулю» из города 1 в город 2, то надо заплатить не меньше 1. Это и есть оценка нуля. Оценки всех нулей поставлены на табл. 5 правее и выше нуля (оценки нуля, равные нулю, не ставились).

Выберем максимальную из этих оценок (в примере есть несколько оценок, равных единице, выберем первую из них, в клетке (1,2)).

Итак, выбрано нулевое ребро (1,2). Разобьем все туры на два класса - включающие ребро (1,2) и не включающие ребро (1,2). Про второй класс можно сказать, что придется приплатить еще 1, так что туры этого класса стоят 35 или больше.

Что касается первого класса, то в нем надо рассмотреть матрицу на табл. 6 с вычеркнутой первой строкой и вторым столбцом.

Таблица 5

1

2

3

4

5

6

1

-

0

0

3

3

6

1

2

01

-

1

4

1

0

3

1

2

-

01

0

3

4

4

5

01

-

1

3

5

4

2

0

1

-

0

6

7

1

3

3

01

-

Таблица 6

1

3

4

5

6

2

01

1

4

1

0

3

1

-

01

0

3

4

4

01

-

1

3

5

4

0

1

-

0

6

7

3

3

01

-

Таблица 7

1

3

4

5

6

2

01

1

4

1

0

3

03

-

01

0

3

4

3

01

-

1

3

5

3

0

1

-

0

6

6

3

3

01

-

Таблица 8

3

4

5

6

2

1

4

1

0

4

01

-

1

3

5

0

1

-

0

6

3

3

01

-

Дополнительно в уменьшенной матрице поставлен запрет в клетке (2,1), т. к. выбрано ребро (1,2) и замыкать преждевременно тур ребром (2,1) нельзя. Уменьшенную матрицу можно привести на 1 по первому столбцу, так что каждый тур, ей отвечающий, стоит не меньше 35. Результат наших ветвлений и получения оценок показан на рис.6.

Рис.6

Кружки представляют классы: верхний кружок - класс всех туров; нижний левый - класс всех туров, включающих ребро (1,2); нижний правый - класс всех туров, не включающих ребро (1,2). Числа над кружками - оценки снизу.

Продолжим ветвление в положительную сторону: влево - вниз. Для этого оценим нули в уменьшенной матрице C[1,2] на табл. 7. Максимальная оценка в клетке (3,1) равна 3. Таким образом, оценка для правой нижней вершины на

Рис.7

рис. 7 есть 35+3=38. Для оценки левой нижней вершины на рис. 7 нужно вычеркнуть из матрицы C[1,2] еще строку 3 и столбец 1, получив матрицу C[(1,2),(3,1)] на табл. 8. В эту матрицу нужно поставить запрет в клетку (2,3), так как уже построен фрагмент тура из ребер (1,2) и (3,1), т.е. [3,1,2], и нужно запретить преждевременное замыкание (2,3). Эта матрица приводится по столбцу на 1 (табл. 9), таким образом, каждый тур соответствующего класса (т.е. тур, содержащий ребра (1,2) и (3,1)) стоит 36 и более.

Таблица 9

3

4

5

6

2

1

3

1

0

4

01

-

1

3

5

0

02

-

0

6

3

2

03

-

Таблица 10

3

4

6

2

1

3

03

4

03

-

3

5

0

03

0

Таблица 11

3

4

4

0

-

5

0

0

Оцениваем теперь нули в приведенной матрице C[(1,2),(3,1)] нуль с максимальной оценкой 3 находится в клетке (6,5). Отрицательный вариант имеет оценку 38+3=41. Для получения оценки положительного варианта убираем строчку 6 и столбец 5, ставим запрет в клетку (5,6), см. табл. 10. Эта матрица неприводима. Следовательно, оценка положительного варианта не увеличивается (рис.8).

Оценивая нули в матрице на табл. 10, получаем ветвление по выбору ребра (2,6), отрицательный вариант получает оценку 36+3=39, а для получения оценки положительного варианта вычеркиваем вторую строку и шестой столбец, получая матрицу на табл. 11.

В матрицу надо добавить запрет в клетку (5,3), ибо уже построен фрагмент тура [3,1,2,6,5] и надо запретить преждевременный возврат (5,3). Теперь, когда осталась матрица 2х2 с запретами по диагонали, достраиваем тур ребрами (4,3) и (5,4). Мы не зря ветвились, по положительным вариантам. Сейчас получен тур: 1>2>6>5>4>3>1 стоимостью в 36. При достижении низа по дереву перебора класс туров сузился до одного тура, а оценка снизу превратилась в точную стоимость.

Итак, все классы, имеющие оценку 36 и выше, лучшего тура не содержат. Поэтому соответствующие вершины вычеркиваются. Вычеркиваются также вершины, оба потомка которой вычеркнуты. Мы колоссально сократили полный перебор. Осталось проверить, не содержит ли лучшего тура класс, соответствующий матрице С[Not(1,2)], т.е. приведенной матрице С с запретом в клетке 1,2, приведенной на 1 по столбцу (что дало оценку 34+1=35). Оценка нулей дает 3 для нуля в клетке (1,3), так что оценка отрицательного варианта 35+3 превосходит стоимость уже полученного тура 36 и отрицательный вариант отсекается.

Рис.8

Для получения оценки положительного варианта исключаем из матрицы первую строку и третий столбец, ставим запрет (3,1) и получаем матрицу. Эта матрица приводится по четвертой строке на 1, оценка класса достигает 36 и кружок зачеркивается. Поскольку у вершины «все» убиты оба потомка, она убивается тоже. Вершин не осталось, перебор окончен. Мы получили тот же минимальный тур, который показан подчеркиванием на табл. 2.

Удовлетворительных теоретических оценок быстродействия алгоритма Литтла и родственных алгоритмов нет, но практика показывает, что на современных ЭВМ они часто позволяют решить ЗК с n = 100. Это огромный прогресс по сравнению с полным перебором. Кроме того, алгоритмы типа ветвей и границ являются, если нет возможности доводить их до конца, эффективными эвристическими процедурами.

1.2 Выбор алгоритма решения

Выбираем для решения задачи алгоритм Дейкстры , т.к данный алгоритм позволяет решить задачу комивояжера оптимальным способом.

1.3 Математическая модель

Описываемый в данном разделе алгоритм позволяет находить в графе кратчайший путь между двумя выделенными вершинами s и t при положительных длинах дуг. Этот алгоритм,. предложенный в 1959 г. Дейкстрой, считается одним из наиболее эффективных алгоритмов решения задачи.

Главная идея, лежащая в основе алгоритма Дейкстры, предельно проста. Предположим, что нам известны m вершин, ближайших к вершине s (близость любой вершины x к вершине s определяется длиной кратчайшего пути, ведущего из s в x). Пусть также известны сами кратчайшие пути, соединяющие вершину s с выделенными m вершинами). Покажем теперь, как может быть определена (m + 1)-я ближайшая к s вершина.
Окрасим вершину s и m ближайших к ней вершин. Построим для каждой неокрашенной вершины y пути, непосредственно соединяющие с помощью дуг (х, у) каждую окрашенную вершину х с у. Выберем из этих путей кратчайший, и будем считать его условно кратчайшим путем из вершины s в вершину y.

Какая же из неокрашенных вершин является (m + 1)-й ближайшей к s вершиной? Та, для которой условно кратчайший путь имеет наименьшую длину. Это обусловливается тем, что кратчайший путь из вершины s в (m +1)-ю ближайшую вершину при положительном значении длин всех дуг должен содержать в качестве промежуточных лишь окрашенные вершины, т. е. вершины, входящие в число m вершин, ближайших к вершине s.
Итак, если известны m ближайших к s вершин, то (m + 1)-я ближайшая к s вершина может быть найдена так, как это описано выше. Начиная с m = 0, описанная процедура может повторяться до тех пор, пока не будет получен кратчайший путь, ведущий из вершины s к вершине t.
Имея в виду приведенные соображения, мы можем теперь формально описать алгоритм Дейкстры.

Алгоритм

1. Каждой вершине X в ходе алгоритма присваивается число d(x), равное длине кратчайшего пути из вершины S в вершину X и включающем только окрашенные вершины. Положить d(s)=0 и d(x)=? для всех остальных вершин графа. Окрашиваем вершину S и полагаем y=S, где y - последняя окрашенная вершина.

2. Для каждой неокрашенной вершины X пересчитывается величина d(x) по следующей формуле:

d(x)=min{d(x); d(y)+ ay,x} (1)

3. Если d(x)=? для всех неокрашенных вершин, то алгоритм заканчивается т. к. отсутствуют пути из вершины S в неокрашенные вершины. Иначе окрашивается та вершина, для которой величина d(x) является минимальной. Окрашивается и дуга, ведущая в эту вершину в соответствии с выражением (1) и полагаем y=x.

4. Если y=t, кратчайший путь из s в t найден. Иначе переходим к шагу 2.

Каждый раз окрашивается вершина и дуга, заходящая в эту вершину. Окрашенные дуги не могут образовывать цикл, а образуют в исходном графе дерево с корнем (началом) в вершине s. Это дерево называют ориентированным деревом кратчайших путей. Путь из s в t принадлежит этому дереву. При поиске одного кратчайшего пути процедура наращивания завершается при достижении конечной вершины этого пути. Нам же необходимо получить все кратчайшие пути начинающиеся в вершине №1. Для этого процедуру наращивания ориентированного дерева продолжается до тех пор, пока все вершины не будут включены. Таким образом, мы получаем ориентированное дерево кратчайших путей, которое является покрывающим деревом графа.

Иногда в графе имеются несколько кратчайших путей. Кратчайший путь будет единственным, если в алгоритме ни разу не возникает неоднозначность при окрашивании дуги.

Отметим, что главным условием успешного применения алгоритма дейкстры к задаче на графе является неотрицательность длин дуг этого графа.

Сложность алгоритма Дейкстры зависит от способа нахождения вершины v, а также способа хранения множества непосещенных вершин и способа обновления меток. Обозначим через n количество вершин, а через m -- количество ребер в графе G.

Пример:

Рассмотрим выполнение алгоритма на примере графа, показанного на рисунке. Пусть требуется найти кратчайшие расстояния от 1-й вершины до всех остальных.

Кружками обозначены вершины, линиями -- пути между ними (ребра графа). В кружках обозначены номера вершин, над ребрами обозначена их «цена» -- длина пути. Рядом с каждой вершиной красным обозначена метка -- длина кратчайшего пути в эту вершину из вершины 1.

Первый шаг. Рассмотрим шаг алгоритма Дейкстры для нашего примера. Минимальную метку имеет вершина 1. Её соседями являются вершины 2, 3 и 6.

Первый по очереди сосед вершины 1 -- вершина 2, потому что длина пути до неё минимальна. Длина пути в неё через вершину 1 равна сумме кратчайшего расстояния до вершины 1, значению её метки, и длины ребра, идущего из 1-й в 2-ю, то есть 0 + 7 = 7. Это меньше текущей метки вершины 2, бесконечности, поэтому новая метка 2-й вершины равна 7.

Аналогичную операцию проделываем с двумя другими соседями 1-й вершины -- 3-й и 6-й.

Все соседи вершины 1 проверены. Текущее минимальное расстояние до вершины 1 считается окончательным и пересмотру не подлежит (то, что это действительно так, впервые доказал Э. Дейкстра). Вычеркнем её из графа, чтобы отметить, что эта вершина посещена.

Второй шаг. Шаг алгоритма повторяется. Снова находим «ближайшую» из непосещенных вершин. Это вершина 2 с меткой 7.

Снова пытаемся уменьшить метки соседей выбранной вершины, пытаясь пройти в них через 2-ю вершину. Соседями вершины 2 являются вершины 1, 3 и 4.

Первый (по порядку) сосед вершины 2 -- вершина 1. Но она уже посещена, поэтому с 1-й вершиной ничего не делаем.

Следующий сосед вершины 2 -- вершина 3, так как имеет минимальную метку из вершин, отмеченных как не посещённые. Если идти в неё через 2, то длина такого пути будет равна 17 (7 + 10 = 17). Но текущая метка третьей вершины равна 9, а это меньше 17, поэтому метка не меняется.

Ещё один сосед вершины 2 -- вершина 4. Если идти в неё через 2-ю, то длина такого пути будет равна сумме кратчайшего расстояния до 2-й вершины и расстояния между вершинами 2 и 4, то есть 22 (7 + 15 = 22). Поскольку 22<, устанавливаем метку вершины 4 равной 22.

Все соседи вершины 2 просмотрены, замораживаем расстояние до неё и помечаем её как посещенную.

Третий шаг. Повторяем шаг алгоритма, выбрав вершину 3. После её «обработки» получим такие результаты:

Дальнейшие шаги. Повторяем шаг алгоритма для оставшихся вершин. Это будут вершины 6, 4 и 5, соответственно порядку.

Завершение выполнения алгоритма. Алгоритм заканчивает работу, когда нельзя больше обработать ни одной вершины. В данном примере все вершины зачеркнуты, однако ошибочно полагать, что так будет в любом примере - некоторые вершины могут остаться незачеркнутыми, если до них нельзя добраться. Результат работы алгоритма виден на последнем рисунке: кратчайший путь от вершины 1 до 2-й составляет 7, до 3-й -- 9, до 4-й -- 20, до 5-й -- 20, до 6-й -- 11.

Псевдокод:

Присвоим

Для всех отличных от

присвоим

Пока

Пусть -- вершина с минимальным

занесём в

Для всех таких, что

если то

изменим

изменим

Блок-схема:

2. Расчет тестового примера

Необходимо найти все кратчайшие пути от вершины №1 для графа, представленого на рисунке

Составим матрицу длин кратчайших дуг для данного графа.

?

10

18

8

?

?

10

?

16

9

21

?

?

16

?

?

15

?

7

9

?

?

?

12

?

?

?

?

?

23

?

?

15

?

23

?

Cтартовая вершина, от которой строится дерево кратчайших путей - вершина 1.

Задаем стартовые условия: d(1)=0, d(x)=?

Окрашиваем вершину 1, y=1.

Находим ближайшую вершину к окрашенной нами, используя формулу: d(x)=min{d(x); d(y)+ ay,x}

d(2)=min{d(2) ; d(1)+a(1,2)}=min{?; 0+10}=10

d(3)=min{d(3) ; d(1)+a(1,3)}=min{?; 0+18}=18

d(4)=min{d(4) ; d(1)+a(1,4)}=min{?; 0+8}=8

d(5)=min{d(5) ; d(1)+a(1,5)}=min{?; 0+?}=?

d(6)=min{d(6) ; d(1)+a(1,6)}=min{?; 0+?}=?

Минимальную длину имеет путь от вершины 1 до вершины 4 d(4)=8. Включаем вершину №4 в текущее ориентированноe дерево, а так же дугу ведущую в эту вершину. Согласно выражению это дуга (1,4)

d(2)=min{d(2) ; d(4)+a(4,2)}=min{10; 8+9}=10

d(3)=min{d(3) ; d(4)+a(4,3)}=min{18; 8+?}=18

d(5)=min{d(5) ; d(4)+a(4,5)}=min{?; 8+?}=?

d(6)=min{d(6) ; d(4)+a(4,6)}=min{?; 8+12}=20

Минимальную длину имеет путь от вершины 1 до вершины 2 d(2)=10. Включаем вершину №2 в текущее ориентированноe дерево, а так же дугу ведущую в эту вершину. Согласно выражению это дуга (1,2)

d(3)=min{d(3) ; d(2)+a(2,3)}=min{18; 10+16}=18

d(5)=min{d(5) ; d(2)+a(2,5)}=min{?; 10+21}=31

d(6)=min{d(6) ; d(2)+a(2,6)}=min{20; 10+?}=20

Минимальную длину имеет путь от вершины 1 до вершины 3 d(3)=18. Включаем вершину №3 в текущее ориентированноe дерево, а так же дугу ведущую в эту вершину. Согласно выражению это дуга (1,3)

d(5)=min{d(5) ; d(3)+a(3,5)}=min{31; 18+15}=31

d(6)=min{d(6) ; d(3)+a(3,6)}=min{20; 18+?}=20

Минимальную длину имеет путь от вершины 1 до вершины 6 d(6)=20. Включаем вершину №6 в текущее ориентированноe дерево, а так же дугу ведущую в эту вершину. Согласно выражению это дуга (4,6)

d(5)=min{d(5) ; d(6)+a(6,5)}=min{31; 20+23}=31

Минимальную длину имеет путь от вершины 1 до вершины 5 d(5)=31. Включаем вершину №5 в текущее ориентированноe дерево, а так же дугу ведущую в эту вершину. Согласно выражению это дуга (2,5)

Мы получили ориентированное дерево кратчайших путей начинающихся в вершине №1 для исходного графа .

d(1)=1 Длина маршрута L=0

d(2)=1-2 Длина маршрута L=10

d(3)=1-3 Длина маршрута L=18

d(4)=1-4 Длина маршрута L=8

d(5)=1-2-5 Длина маршрута L=31

d(6)=1-4-6 Длина маршрута L=20

задача коммивояжер алгоритм комбинаторный

Ориентированное дерево с корнем в вершине №1:

Заключение

Изучены эвристический, приближенный и точный алгоритмы решения ЗК. Точные алгоритмы решения ЗК - это полный перебор или усовершенствованный перебор. Оба они, особенно первый, не эффективны при большом числе вершин графа.

Предложен собственный эффективный метод решения ЗК на основе построения выпуклого многоугольника и включения в него центральных вершин (городов).

Проведён анализ наиболее рациональных методов решения ЗК и определены области их эффективного действия: для малого числа вершин можно использовать точный метод лексического перебора; для большого числа вершин рациональнее применять метод ветвей и границ или метод автора работы (Анищенко Сергея Александровича).

Изучены практические применения ЗК и задачи с переналадками, сводимые к ЗК.

Приведены тексты программ, позволяющие решить ЗК различными методами.

Размещено на Allbest.ru

...

Подобные документы

  • Методы решения задачи коммивояжера. Математическая модель задачи коммивояжера. Алгоритм Литтла для нахождения минимального гамильтонова контура для графа с n вершинами. Решение задачи коммивояжера с помощью алгоритма Крускала и "деревянного" алгоритма.

    курсовая работа [118,7 K], добавлен 30.04.2011

  • Сущность и содержание, основные понятия и критерии теории графов. Понятие и общее представление о задаче коммивояжера. Описание метода ветвей и границ, практическое применение. Пример использования данного метода ветвей для решения задачи коммивояжера.

    контрольная работа [253,0 K], добавлен 07.06.2011

  • Суть задачи коммивояжера, ее применение. Общая характеристика методов ее решения: метод полного перебора, "жадные" методы, генетические алгоритмы и их обобщения. Особенности метода ветвей и границ и определение наиболее оптимального решения задачи.

    курсовая работа [393,2 K], добавлен 18.06.2011

  • Формирование нижних и верхних оценок целевой функции. Алгоритм метода ветвей и границ, решение задач с его помощью. Решение задачи коммивояжера методом ветвей и границ. Математическая модель исследуемой задачи, принципы ее формирования и порядок решения.

    курсовая работа [153,2 K], добавлен 25.11.2011

  • Нахождение полинома Жегалкина методом неопределенных коэффициентов. Практическое применение жадного алгоритма. Венгерский метод решения задачи коммивояжера. Применение теории нечетких множеств для решения экономических задач в условиях неопределённости.

    курсовая работа [644,4 K], добавлен 16.05.2010

  • Постановка задачи коммивояжера и основные алгоритмы решения. Маршруты и пути. Понятия транспортной сети. Понятие увеличивающая дуга, цепь, разрез. Алгоритм Флойда-Уоршелл. Решение задачи аналитическим методом. Создание приложения для решения задачи.

    курсовая работа [541,3 K], добавлен 08.10.2015

  • Методика решения задач высшей математики с помощью теории графов, ее сущность и порядок разрешения. Основная идея метода ветвей и границ, ее практическое применение к задаче. Разбиение множества маршрутов на подмножества и его графическое представление.

    задача [53,0 K], добавлен 24.07.2009

  • Оптимальная настройка параметров "алгоритма отжига" при решении задачи коммивояжера. Влияние начальной температуры, числа поворотов при одной температуре и коэффициента N на результат. Сравнение и определение лучшей функции для расчётов задачи.

    контрольная работа [329,9 K], добавлен 20.11.2011

  • Задачи Коши и методы их решения. Общие понятия, сходимость явных способов типа Рунге-Кутты, практическая оценка погрешности приближенного решения. Автоматический выбор шага интегрирования, анализ брюсселятора и метод Зонневельда для его расчета.

    курсовая работа [1,7 M], добавлен 03.11.2011

  • Метод Эйлера: сущность и основное содержание, принципы и направления практического применения, определение погрешности. Примеры решения задачи в Excel. Метод разложения решения в степенной ряд. Понятие и погрешность, решение с помощью метода Пикара.

    контрольная работа [129,0 K], добавлен 13.03.2012

  • Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.

    презентация [247,7 K], добавлен 20.02.2015

  • Способы решения задач дискретной математики. Расчет кратчайшего пути между парами всех вершин в ориентированном и неориентированном графах с помощью использования алгоритма Флойда. Анализ задачи и методов ее решения. Разработка и характеристика программы.

    курсовая работа [951,4 K], добавлен 22.01.2014

  • Понятие, закономерности формирования и решения дифференциальных уравнений. Теорема о существовании и единственности решения задачи Коши. Существующие подходы и методы решения данной задачи, оценка погрешности полученных значений. Листинг программы.

    курсовая работа [120,8 K], добавлен 27.01.2014

  • Сущность комбинаторики как области математики, исследующей количество и разновидности комбинаций заданных объектов в определенных условиях. Особенности и понятие комбинаторной задачи. Примеры составления комбинаторных задач и способы их решения.

    презентация [15,3 M], добавлен 19.02.2012

  • Доказательство существования или отсутствия алгоритма для решения поставленной задачи. Определение алгоритмической неразрешимости задачи. Понятия суперпозиции функций и рекурсивных функций. Анализ схемы примитивной рекурсии и операции минимизации.

    курсовая работа [79,5 K], добавлен 12.07.2015

  • Понятие "задача" и процесс ее решения. Технология обучения приемам восприятия и осмысления, поиска и составления плана решения. Методика обучения решению задач различными методами. Сущность, смысл и обозначение дробей, практические способы их сравнения.

    методичка [242,5 K], добавлен 03.04.2011

  • Форма для ввода целевой функции и ограничений. Характеристика симплекс-метода. Процесс решения задачи линейного программирования. Математическое описание алгоритма симплекс-метода. Решение задачи ручным способом. Описание схемы алгоритма программы.

    контрольная работа [66,3 K], добавлен 06.04.2012

  • Составление четкого алгоритма, следуя которому, можно решить большое количество задач на нахождение угла между прямыми, заданными точками на ребрах многогранника. Условия задач по теме и примеры их решения. Упражнения для решения подобного рода задач.

    практическая работа [1,5 M], добавлен 15.12.2013

  • Метод разделения переменных в задаче Штурма-Лиувилля. Единственность решения смешанной краевой задачи, реализуемая методом априорных оценок. Постановка и решение смешанной краевой задачи для нелокального волнового уравнения с дробной производной.

    курсовая работа [1003,8 K], добавлен 29.11.2014

  • Нахождение минимального пути от фиксированной до произвольной вершины графа с помощью алгоритма Дейкстры, рассмотрение основных принципов его работы. Описание блок-схемы алгоритма решения задачи. Проверка правильности работы разработанной программы.

    курсовая работа [495,4 K], добавлен 19.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.