Модели непрерывные и дискретные

Общие признаки и свойства моделей. Характеристика материальных и идеальных моделей, их классификация. Описание непрерывных и дискретных математических моделей, их основные понятия и положения. Условия скачкообразного изменения выходных свойств систем.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 21.10.2014
Размер файла 30,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Общие признаки и свойства моделей

2. Материальные и идеальные модели

3. Непрерывные и дискретные математические модели

Введение

Термин модель неоднозначен и охватывает чрезвычайно широкий круг материальных и идеальных объектов. Признаком, объединяющим такие, казалось бы, несопоставимые объекты как система дифференциальных уравнений математической физики и пара дамских туфель, выставленных на витрине, является их информационная сущность. Любая модель - идеальная или материальная, используемая в научных целях, на производстве или в быту - несет информацию о свойствах и характеристиках исходного объекта (объекта - оригинала), существенных для решаемой субъектом задачи. Модели - отражение знаний об окружающем мире.

Модель в общем смысле есть создаваемый с целью получения и (или) хранения информации специфический объект (в форме мысленного образа, описания знаковыми средствами либо материальной системы), отражающий свойства, характеристики и связи объекта - оригинала произвольной природы, существенные для задачи, решаемой субъектом.

1. Общие признаки и свойства моделей

Общие признаки моделей

1. Модель представляет собой «четырехместную конструкцию», компонентами которой являются субъект; задача, решаемая субъектом; объект-оригинал и язык описания или способ воспроизведения модели. Особую роль в структуре обобщенной модели играет решаемая субъектом задача. Вне контекста задачи или класса задач понятие модели не имеет смысла.

2. Каждому материальному объекту соответствует бесчисленное множество в равной мере адекватных, но различных по существу моделей, связанных с разными задачами.

3. Паре задача-объект соответствует множество моделей, содержащих в принципе одну и ту же информацию, но различающихся формами ее представления или воспроизведения.

4. Модель всегда является лишь относительным, приближенным подобием объекта-оригинала и в информационном отношении принципиально беднее последнего.

5. Произвольная природа объекта-оригинала, фигурирующая в принятом определении, означает, что этот объект может быть материально-вещественным, может носить чисто информационный характер и, наконец, может представлять собой комплекс разнородных материальных и информационных компонентов. Однако независимо от природы объекта, характера решаемой задачи и способа реализации модель представляет собой информационное образование.

6. В частном случае роль объекта моделирования в исследовательской или прикладной задаче играет не фрагмент реального мира, рассматриваемый непосредственно, а некая идеальная конструкция, т.е. по сути дела другая модель, созданная ранее и практически достоверная.

Свойства моделей

1) конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;

2) упрощенность: модель отображает только существенные стороны объекта;

3) приблизительность: действительность отображается моделью приблизительно;

4)·адекватность: степень успешности описания моделью объекта моделирования;

5) информативность: модель должна содержать достаточную информацию о системе - в рамках гипотез, принятых при построении модели.

2. Материальные и идеальные модели

Классификация моделей

Каждая модель характеризуется тремя признаками:

1) принадлежностью к определённому классу задач (по классам задач);

2) указанием класса объектов моделирования (по классам объектов);

3) способом реализации (по форме представления и обработки информации).

Рассмотрим более подробно последний вид классификации. По этому признаку модели делятся на материальные и идеальные.

1 Материальные модели:

1.1 геометрически подобные масштабные, воспроизводящие пространственно-геометрические характеристики оригинала безотносительно его субстрату (макеты зданий и сооружений, учебные муляжи и др.);

1.2 основанные на теории подобия, воспроизводящие с масштабированием в пространстве и времени свойства и характеристики оригинала той же природы, что и модель, (гидродинамические модели судов, продувочные модели летательных аппаратов);

1.3 аналоговые приборные, воспроизводящие исследуемые свойства и характеристики объекта оригинала в моделирующем объекте другой природы на основе некоторой системы прямых аналогий (разновидности электронного аналогового моделирования).

Рассмотрим более подробно два последних пункта. Для парохода правильный выбор обводов, подбор гребного винта и согласование с характеристиками винта и корпуса мощности и скорости вращения вала - проблема № 1. По существу речь идет о необходимости оптимизировать взаимодействие системы корпус - винт - двигатель с обтекающей судно жидкой средой по критерию максимального КПД. Решение проблемы опытным путем невозможно по экономическим соображениям, не поддается она и теоретическому решению. Выход был найден на пути синтеза теории масштабного гидродинамического моделирования, т.е. экспериментальное исследование малых геометрически подобных моделей проектируемых судов в специальных бассейнах на основе теории подобия. Теория обеспечивала возможность достоверного переноса данных, полученных на модели, на «натуру», на свойства и характеристики реального, но еще не существующего судна. И сегодня методы масштабного физического моделирования сохраняют свое значение.

Аналоговое моделирование основано на том, что свойства и характеристики некоторого объекта воспроизводятся с помощью модели иной, чем у оригинала физической природы. Целый ряд явлений и процессов существенно различной природы описывается аналогичными по структуре математическими выражениями. Описываемые аналогичными математическими структурами разнородные объекты можно рассматривать как пару моделей, которые с точностью до свойств, учитываемых в математическом описании, взаимно отображают друг друга, причем коэффициенты, связывающие соответственные (сходственные) параметры, являются в этом случае размерными величинами.

2 Идеальные модели

2.1 неформализованные модели, т.е. системы представлений об объекте оригинале, сложившиеся в человеческом мозгу;

2.2 частично формализованные:

2.2.1 вербальные - описание свойств и характеристик оригинала на некотором естественном языке (текстовые материалы проектной документации, словесное описание результатов технического эксперимента);

2.2.2 графические иконические - черты, свойства и характеристики оригинала, реально или хотя бы теоретически доступные непосредственно зрительному восприятию (художественная графика, технологические карты);

2.2.3 графические условные - данные наблюдений и экспериментальных исследований в виде графиков, диаграмм, схем;

2.2.4 вполне формализованные (математические) модели.

Основное отличие этого типа моделей от остальных состоит в вариативности - в кодировании одним знаковым описанием огромного количества конкретных вариантов поведения системы. Tак, линейные дифференциальные уравнения с постоянными коэффициентами описывают и движение массы на пружине, и изменение тока в колебательном контуре, и измерительную схему системы автоматического регулирования, и ряд других процессов. Однако еще более важно то, что в каждом из этих описаний одни и те же уравнения в буквенном (а вообще говоря, и в числовом) виде соответствуют бесконечному числу комбинаций конкретных значений параметров. Скажем, для процесса механических колебаний - это любые значения массы и жесткости пружины.

В знаковых моделях возможен дедуктивный вывод свойств, количество следствий в них обычно более значительно, чем в моделях других типов. Они отличаются компактной записью удобством работы, возможностью изучения в форме, абстрагированной от конкретного содержания. Все это позволяет считать знаковые модели наивысшей ступенью и рекомендовать стремиться к такой форме моделирования.

Заметим, что деление моделей на вербальные, натурные и знаковые в определенной степени условно. Так, существуют смешанные типы моделей, скажем, использующие и вербальные, и знаковые построения.

3. Непрерывные и дискретные математические модели

модель материальный скачкообразный дискретный

Будем предполагать, что возможно, хотя бы в принципе, установить и на некотором языке описания (например, средствами математики) охарактеризовать зависимость каждой из выходных переменных от входных. Связь между входными и выходными переменными моделируемого объекта в принципе может характеризоваться графически, аналитически, т.е. посредством некоторой формулы общего вида, или алгоритмически. Независимо от формы представления конструкта, описывающего эту связь, будем именовать его оператором вход-выход и обозначать через В.

Пусть М=М(X,Y,Z), где X - множество входов, Y - выходов, Z - состояний системы. Схематически можно это изобразить: X Z Y.

Рассмотрим теперь наиболее существенные с точки зрения моделирования внутренние свойства объектов разного класса. При этом придется использовать понятие структура и параметры моделируемого объекта. Под структурой понимается совокупность учитываемых в модели компонентов и связей, содержащихся внутри объекта, а после формализации описания объекта - вид математического выражения, которое связывает его входные и выходные переменные (например: у=au+bv). Параметры представляют собой количественные характеристики внутренних свойств объекта, которые отражаются принятой структурой, а в формализованной математической модели они суть коэффициенты (постоянные переменные), входящие в выражения, которыми описывается структура (а и b).

Непрерывность и дискретность.

Все те объекты, переменные которых (включая, при необходимости, время) могут принимать несчетное множество сколь угодно близких друг к другу значений называются непрерывными или континуальными. Подавляющее большинство реальных физических и теоретических объектов, состояние которых характеризуется только макроскопическими физическими величинами (температура, давление, скорость, ускорение, сила тока, напряженность электрического или магнитного полей и т.д.) обладают свойством непрерывности. Математические структуры, адекватно описывающие такие объекты, тоже должны быть непрерывными. Поэтому при модельном описании таких объектов используется главным образом, аппарат дифференциальных и интегро-дифференциальных уравнений. Объекты, переменные которых могут принимать некоторое, практически всегда конечное число наперед известных значений, называются дискретными. Примеры: релейно-контактные переключательные схемы, коммутационные системы АТС. Основой формализованного описания дискретных объектов является аппарат математической логики (логические функции, аппарат булевой алгебры, алгоритмические языки). В связи с развитием ЭВМ дискретные методы анализа получили широкое распространение также для описания и исследования непрерывных объектов.

Свойство непрерывности и дискретности выражается в структуре множеств (совокупностей), которым принадлежат параметры состояния, параметр процесса и входы, выходы системы. Таким образом, дискретность множеств Z, Т, Х, Y ведет к модели, называемой дискретной, а их непрерывность -- к модели с непрерывными свойствами. Дискретность входов (импульсы внешних сил, ступенчатость воздействий и др.) в общем случае не ведет к дискретности модели в целом. Важной характеристикой дискретной модели является конечность или бесконечность числа состояний системы и числа значений выходных характеристик. В первом случае модель называется дискретной конечной. Дискретность модели также может быть как естественным условием (система скачкообразно меняет свое состояние и выходные свойства), так и искусственно внесенной особенностью. Типичный пример последнего - замена непрерывной математической функции на набор ее значений в фиксированных точках.

Непрерывные математические модели

Для реализации ММ, представляемых ДУЧП или системами ОДУ, используются численные методы непрерывной математики, поэтому рассмотренные ММ называют непрерывными.

На рис. 1 показаны преобразования непрерывных ММ в процессе перехода от исходных формулировок задач к рабочим программам, представляющим собой последовательности элементарных арифметических и логических операций. Стрелками 1, 2 и 3 показаны переходы от описания структуры объектов на соответствующем иерархическом уровне к математической формулировке задачи. Дискретизация (4) и алгебраизация (5) ДУЧП по пространственным переменным осуществляются методами конечных разностей (МКР) или конечных элементов (МКЭ). Применение МКР или МКЭ к стационарным ДУЧП приводит к системе алгебраических уравнений (АУ), а к нестационарным ДУЧП--к системе ОДУ. Алгебраизация и дискретизация системы ОДУ по переменной t осуществляются методами численного интегрирования. Для нелинейных ОДУ (6) это преобразование приводит к системе нелинейных АУ, для линейных ОДУ (7) -- к системе линейных алгебраических уравнений (ЛАУ). Нелинейные АУ решаются итерационными методами. Стрелка 8 соответствует решению методом Ньютона, основанному на линеаризации уравнений, стрелка 9--методами Зейделя, Якоби, простой итерации и т. п. Решение системы ЛАУ сводится к последовательности элементарных операций (10) с помощью методов Гаусса или LU-разложения.

Рис. 1- Преобразования непрерывных математических моделей

Непрерывные ММ и используемые для их анализа методы вычислительной математики получили широкое распространение в САПР различных отраслей промышленности.

Создание методики автоматического формирования математических моделей систем позволило автоматизировать процедуры анализа и верификации широкого класса технических объектов. Инвариантный характер этой методики обусловил разработку на ее основе методов и алгоритмов, реализованных во многих ПМК проектирования электронных, механических, гидравлических, теплоэнергетических устройств и систем. Известны такие методы формирования ММ как узловой метод, контурный метод, метод переменных состояния.

Дискретные математические модели

Дискретной математической моделью называется модель, в которой выполнена дискретизация тех или иных переменных. Рассмотрим ММ, в которых дискретными являются зависимые переменные, характеризующие состояние моделируемого объекта.

Проектирование систем на функционально-логическом и системном уровнях основано на применении дискретных ММ. При моделировании в подсистемах функционально-логического проектирования принимаются те же допущения, что и при моделировании аналоговых систем на верхних уровнях. Кроме того, моделируемый объект представляется совокупностью взаимосвязанных логических элементов, состояния которых характеризуются переменными, принимающими значения в конечном множестве. В простейшем случае это множество {0, 1}. Непрерывное время t заменяется дискретной последовательностью моментов времени tк, при этом длительность такта . Следовательно, математической моделью объекта является конечный автомат (КА). Функционирование КА описывается системой логических уравнений КА

На системном уровне проектирования систем преимущественно распространены модели систем массового обслуживания (СМО). Для таких моделей характерно то, что в них отображаются объекты двух типов--заявки на обслуживание и обслуживающие аппараты (ОА). При проектировании ВС заявками являются решаемые задачи, а обслуживающими аппаратами--оборудование ВС. Заявка может находиться в состоянии «обслуживание» или «ожидание», а обслуживающий аппарат--в состоянии «свободен» или «занят». Состояние СМО характеризуется состояниями ее ОА и заявок. Смена состояний называется событием. Модели СМО используются для исследования процессов, происходящих в этой системе при подаче на входы потоков заявок. Эти процессы представляются последовательностями событий. По результатам исследования определяются наиболее важные выходные параметры системы: производительность, пропускная способность, вероятность и среднее время решения задач, коэффициенты загрузки оборудования.

Появление параллельных и конвейерных систем, необходимость моделировать процессы функционирования не только аппаратных, но и программных средств привело к появлению класса дискретных ММ, называемых сетями Петри. Сети Петри можно использовать для моделирования на функционально-логическом и системном уровнях проектирования широкого круга систем и сетей.

Сети Петри и СМО широко используются для описания функционирования производственных участков, линий и цехов, ориентированных на многономенклатурное производство изделий. Сети Петри -- эффективный инструмент разработки самих САПР. Эти сети могут служить моделями алгоритмов функционирования различных устройств дискретной автоматики.

Размещено на Allbest.ru

...

Подобные документы

  • Процесс выбора или построения модели для исследования определенных свойств оригинала в определенных условиях. Стадии процесса моделирования. Математические модели и их виды. Адекватность математических моделей. Рассогласование между оригиналом и моделью.

    контрольная работа [69,9 K], добавлен 09.10.2016

  • Приемы построения математических моделей вычислительных систем, отображающих структуру и процессы их функционирования. Число обращений к файлам в процессе решения средней задачи. Определение возможности размещения файлов в накопителях внешней памяти.

    лабораторная работа [32,1 K], добавлен 21.06.2013

  • Возникновение и развитие теории динамических систем. Развитие методов реконструкции математических моделей динамических систем. Математическое моделирование - один из основных методов научного исследования.

    реферат [35,0 K], добавлен 15.05.2007

  • Вводные понятия. Классификация моделей. Классификация объектов (систем) по их способности использовать информацию. Этапы создания модели. Понятие о жизненном цикле систем. Модели прогнозирования.

    реферат [36,6 K], добавлен 13.12.2003

  • Динамическая модель как теоретическая конструкция, описывающая изменение состояний объекта. Характеристика основных подходов к построению: оптимизационный, описательный. Рассмотрение способов построения математических моделей дискретных объектов.

    контрольная работа [769,7 K], добавлен 31.01.2013

  • Структурное преобразование схемы объекта и получение в дифференциальной форме по каналам внешних воздействий. Формы представления вход-выходных математических моделей динамических, звеньев и систем, методов их построения, преобразования и использования.

    курсовая работа [1,3 M], добавлен 09.11.2013

  • Определение понятия модели, необходимость их применения в науке и повседневной жизни. Характеристика методов материального и идеального моделирования. Классификация математических моделей (детерминированные, стохастические), этапы процесса их построения.

    реферат [28,1 K], добавлен 20.08.2015

  • Моделирование как метод научного познания, его сущность и содержание, особенности использования при исследовании и проектировании сложных систем, классификация и типы моделей. Математические схемы моделирования систем. Основные соотношения моделей.

    курсовая работа [177,9 K], добавлен 15.10.2013

  • Признаки некоторых четырехугольников. Реализация моделей геометрических ситуаций в средах динамической геометрии. Особенности динамической среды "Живая геометрия", особенности построения в ней моделей параллелограмма, ромба, прямоугольника и квадрата.

    курсовая работа [862,0 K], добавлен 28.05.2013

  • Примеры основных математических моделей, описывающих технические системы. Математическая модель гидроприводов главной лебедки и механизма подъема-опускания самоходного крана. Описание динамики гидропривода механизма поворота стрелы автобетононасоса.

    реферат [3,9 M], добавлен 23.01.2015

  • Условия отображения формы и размеров геометрического объекта при его моделировании. Виды проецирования, используемые при разработке графических моделей. Свойства ортогонального проецирования, отображение на комплексном чертеже точки, прямой и плоскости.

    реферат [1,2 M], добавлен 01.04.2011

  • Особенности математических моделей и моделирования технического объекта. Применение численных математических методов в моделировании. Методика их применения в системе MathCAD. Описание решения задачи в Mathcad и Scilab, реализация базовой модели.

    курсовая работа [378,5 K], добавлен 13.01.2016

  • Понятие и направления исследования случайных величин в математике, их классификация и типы: дискретные и непрерывные. Их основные числовые характеристики, отличительные признаки и свойства. Законы распределения случайных величин, их содержание и роль.

    презентация [1,4 M], добавлен 19.07.2015

  • Первые упоминания о правильных многогранниках. Классификация многогранников, их виды, свойства, теоремы о развертках выпуклых многогранников (Коши и Александрова). Создание моделей правильных многогранников с помощью разверток и методами оригами.

    курсовая работа [2,8 M], добавлен 18.01.2011

  • Основные свойства геологических объектов как пространственных переменных. Виды математических моделей геологических объектов. Вариограмма и ее аппроксимации. Вероятностные модели геологических полей. Влияние на вариограмму геометрической базы измерений.

    презентация [345,8 K], добавлен 17.07.2014

  • Изучение понятия, классификации, свойств математических моделей. Особенности работы с функциями, переменными, графикой, программированием (интерполяция, регрессия) в системе MathCad. Проведение алгоритмического анализа задачи и аппроксимация результатов.

    курсовая работа [4,5 M], добавлен 15.02.2010

  • Применение системы MathCAD при решении прикладных задач технического характера. Основные средства математического моделирования. Решение дифференциальных уравнений. Использование системы MathCad для реализации математических моделей электрических схем.

    курсовая работа [489,1 K], добавлен 17.11.2016

  • Построение модели множественной регрессии теоретических значений динамики ВВП, определение средней ошибки аппроксимации. Выбор фактора, оказывающего большее влияние. Построение парных моделей регрессии. Определение лучшей модели. Проверка предпосылок МНК.

    курсовая работа [352,9 K], добавлен 26.01.2010

  • Сокращение трудоемкости разработки трехмерных геометрических моделей, требования к квалификации дизайнерской разработки. Внешние переменные модели в эскизах и создание путем присвоения размерам имен переменных. Фиксированный размер и управление моделью.

    презентация [92,9 K], добавлен 12.03.2012

  • Знакомство с особенностями построения математических моделей задач линейного программирования. Характеристика проблем составления математической модели двойственной задачи, обзор дополнительных переменных. Рассмотрение основанных функций новых переменных.

    задача [656,1 K], добавлен 01.06.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.