Теория поля и элементы векторного анализа
Элементы математической теории скалярных и векторных полей. Характеристики скалярного поля. Потенциальное векторное поле, его свойства. Потенциальное несжимаемое поле и поле Лапласа (гармоническое). Теорема о разложимости произвольного векторного поля.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 21.10.2014 |
Размер файла | 148,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Теория поля и элементы векторного анализа
Элементы математической теории скалярных и векторных полей
Математическая теория поля занимается изучением его свойств, отвлекаясь от его конкретного физического смысла. Поэтому получаемое в этой теории понятие и закономерности относятся ко всем конкретным полям.
Определение 1
Полем называется совокупность значений той или иной величины (скорость, плотность, давление и т.п.), заданных в каждой точке рассматриваемой области.
Если рассматриваемая величина
а) скаляр, то поле называется скалярным, например
- поле плотности
б) вектор, то поле называется векторным
- поле скоростей
в) тензор, то поле называется тензорным
- поле напряжений.
Определение 2
Если значения рассматриваемых величин не изменяются во времени, то поле называется стационарным (установившимся), если же они изменяются во времени, то поле называется нестационарным.
Здесь мы остановимся на рассмотрении свойств стационарных полей.
Скалярное поле
векторное поле скалярное гармоническое
Характеристики скалярного поля
1) Скалярное поле характеризуется поверхностью уровня (см. рис.)
2) Градиент поля определяется как вектор, составленный из частных производных
(1)
Он направлен по нормали к поверхностям уровня и характеризует величину и направление наибыстрейшего изменения величины поля. Полный дифференциал скалярного поля можно представить в виде:
, (2)
где.
3) Производная по направлению определяется как проекция градиента на данное направление
(3)
Частный случай: производная по нормали:
(4)
4) Частные и полные производные по времени
Рассмотрим нестационарное скалярное поле:
Скорость изменения в фиксированной точке равна и называется частной производной (локальной производной). Пусть задана некоторая траектория в пространстве, где определено скалярное поле
Скорость изменения вдоль траектории определяется как полная производная по t от сложной функции и равна:
(5)
- конвективная производная, она связана с перемещением точки (частицы) из одной точки пространства в другую.
Замечание:
Оператор "набла" - это греческое слово, означающее "арфа" - музыкальный инструмент, по форме напоминающий перевернутый треугольник.
Характеристики векторного поля
1) Векторная линия - кривая, направление которой в каждой ее точке совпадает с направлением вектора , отвечающего этой точке (см. рис. 4)
и
коллинеарные (параллельные) векторы и, следовательно,
=
= =
(6)
2) Производная от вектора по направлению определяется следующим образом:
(7)
- направляющие косинусы вектора , в декартовой системе координат.
Доказательство:
Учтем, что
и так далее, подставим в , получим:
+
+
Итак, мы доказали
.
3) Частная и полная производные по времени от вектора
(9)
Доказательство:
4) Поток вектора через поверхность. Дивергенция
- поток векторной величины через элементарную площадку (элементарный поток)
(11)
векторный поток через незамкнутую площадку;
(12)
поток вектора через замкнутую площадку.
-
поток вектора скорости через поверхность S равен объему жидкости, протекающей через эту площадку поверхности за единицу времени.
По теореме Остроградского-Гаусса
(13)
Сжимая объем и, следовательно получим, используя теорему осреднения
(14)
Следовательно, можно определить как предел
(15)
Пример:
В гидродинамике поле скоростей имеет
дивергенция равна количеству жидкости, рассчитанному на единицу объема, вытекающему из данной точки пространства за одну секунду, т.е. равна мощности источника жидкости (если > 0).
Если < 0, то в этих точках пространства расположен сток жидкости, с мощностью .
5. Циркуляция вектора вдоль линии
Роток векторного поля
Элементарная циркуляция вектора вдоль линии dl равна
(16)
Циркуляция вектора вдоль замкнутой линии L
(17)
Пусть контур L ограничивает некоторую поверхность S. Используем теорему Стокса и преобразуем интеграл по кривой L в интеграл по поверхности S:
(18)
Роток (вихрь) вектора определяется как
(19)
Определение
Циркуляция вектора вдоль замкнутого контура равна потоку его ротора через поверхность, ограниченную этим контуром
(20)
Потенциальное векторное поле
Определение:
Векторное поле называется потенциальным, если существует скалярная величина , такая, что
- называется скалярным потенциалом поля.
Свойства потенциального поля
1. В потенциальном поле отсутствуют вихри (отсутствует ротация), т.е.
Доказательство:
2. Циркуляция по любому замкнутому контуру равна нулю (это следствие п.1)
3. Работа потенциального поля при перемещении точки из одного положения в другое не зависит от пути соединяющего эти положения и равна разности потенциалов в конечных точках.
Циркуляция потенциального поля не зависит от вида кривой, соединяющей две различные точки, и равна разности значений потенциала в данных точках.
отсюда получаем
4. Векторные линии потенциального поля не могут быть замкнутыми.
Доказательство от противоположного:
Допустим, что есть замкнутая векторная линия L. Тогда по определению векторной линии вдоль соответствующего контура и, следовательно, и циркуляция по нему больше нуля , что противоречит свойству 2.
5. Сумма потенциальных векторных полей является потенциальным полем, и потенциал суммы полей равен сумме потенциалов.
Соленоидальное векторное поле
Определение:
Векторное поленазывается соленоидальным (вихревым), если существует векторная величина такая, что
= rot
- называется векторным потенциалом поля .
Свойства соленоидального поля
1. Для того чтобы поле было соленоидальным, необходимо и достаточно, чтобы во всей рассматриваемой области выполнялось равенство div = 0, т.е. его поток через всякую замкнутую поверхность, погруженную в поле, = 0. Следовательно, соленоидальные поля лишены источников и стоков.
Замечание: Это свойство можно положить в определение.
Доказательство основывается на том, что
=
Следствие = 0
как следствие этого свойства получаем, что поток вектора соленоидального поля через две одинаково ориентированные поверхности S1 и S2, опирающиеся на один и тот же контур L, одинаков.
2. Поток соленоидального поля через два любых сечения векторной трубки одинаков.
Доказательство:
Отрезок векторной трубки, ограниченный сечениями S1, S2 и S, можно рассматривать как замкнутую поверхность, помещенную в соленоидальное поле.
Поэтому
, но , т.к. .
Учитывая, что и направлены в противоположные стороны, и вводя (-), получим
отсюда следует
3. В соленоидальном поле векторные линии либо замкнуты, либо уходят к границе поля. Так как , то векторные линии поля не могут начинаться или кончаться в области поля, иначе в…? будет существовать сток или исток, что противоречит свойству 1.
4. Сумма соленоидальных векторных полей есть соленоидальное поле.
Потенциальное несжимаемое поле. Гармоническое поле
, отсюда следует =
Это поле часто называют гармоническим или полем Лапласа.
Резюме
По заданному полю мы всегда можем найти поля u и . Справедливо и обратное утверждение: по известным u и всегда можно найти искомое поле .
Пусть поле известно, тогда потенциалы u и находятся из уравнений:
Если u и известны, тогда векторное поле определяется из уравнений:
Эти уравнения всегда разрешимы.
Теорема о разложимости произвольного векторного поля
Произвольное векторное поле всегда может быть представлено в виде суммы потенциального и соленоидального полей.
Задано
где ;
и, следовательно
Потенциалы и u должны удовлетворять следующему соотношению:
1.
но дивергенция соленоидального поля должна быть равна 0.
отсюда
2.
(**)
Для определения и u получили два дифференциальных уравнения, которые всегда имеют решения и, следовательно, произвольное поле всегда можно представить в виде суммы потенциального и соленоидального полей.
Нахождение векторного поля по его характеристикам
Для нахождения и u нужно решить систему четырех уравнений
Пусть известны характеристики векторного поля
(1)
или в интегральной форме:
Будем искать распределение поля . Для этого разложим его на потенциальное и вихревое .
= + (2)
Подставляя (2) в уравнение (1), получим систему уравнений для отыскания :
(3)
Потенциальное поле удобно представить через градиент
(4)
т.к. в этом случае приходится находить всего лишь одну скалярную величину вместо трех. Подставляем (4) в первое уравнение (3), получаем уравнение
- уравнение Пуассона (5)
Его решение известно и имеет следующий вид:
. (6)
Соленоидальное (вихревое) поле будем искать через векторный потенциал
(7)
Тогда для получаем следующее уравнение:
(8)
Т.к. поле тоже векторное, то для его нахождения кроме rot необходимо задать еще одно условие на div . В качестве такого условия (которое заранее ниоткуда не вытекает) удобно выбрать div= 0 (это называется калибровкой Кирхгофа). В этом случае уравнение (8) упрощается
(8а)
и его решение имеет вид:
(9)
Следовательно, искомое поле равно:
Интегральные соотношения теории векторного поля
1. Теорема Остроградского-Гаусса
2. Теорема Стокса
3. Теорема Грина
(первая форма)
(вторая форма)
4. Интеграл от скаляра по замкнутому контуру
5. Интеграл от по объему
Используя теорему о среднем при находим
- источник
- сток
Циркуляция вектора вдоль линии
Роток векторного поля
- элементарная циркуляция вектора вдоль линии L
- циркуляция вектора вдоль замкнутой линии.
Теорема Стокса
Механический смысл ротора векторного поля
Рассмотрим движение твердого тела. Линейная скорость произвольной точки равна твердого тела равна
где - скорость полюса
- мгновенная угловая скорость
Представим
Следовательно, компоненты скоростей т. М равны
В фиксированный момент времени t переменными являются только координаты т. , все остальные величины , являются постоянными
=
Дифференцирование скалярных и векторных полей
Скалярное поле
Векторное поле
Таблица 1. Операции 2-го порядка
Скалярное поле |
Векторное поле А |
|||
grad |
нет |
; |
нет |
|
div |
Нет |
|||
rot |
нет |
Таблица 2. Дифференцирование произведений
grad |
нет |
нет |
||
div |
нет |
|||
rot |
нет |
+ |
Размещено на Allbest.ru
...Подобные документы
Сущность математической теории скалярных и векторных полей, ее основные понятия и определения. Характерные черты и отличительные признаки скалярных и векторных полей, доказательства их главных теорем.
лекция [121,6 K], добавлен 11.02.2010Операции в скалярных и векторных полях. Наиболее распространенные типы векторных полей и задачи, которые возникают при изучении этих полей. Потенциальное, гармоническое и соленоидальное векторное поле. Векторный потенциал поля. Задачи Дирихле и Неймана.
курсовая работа [294,8 K], добавлен 07.11.2013Изложение теории поля с помощью векторного анализа и составление пособия. Циркуляция векторного поля. Оператор Гамильтона и векторные дифференциальные операции второго порядка. Простейшие векторные поля. Применение теории поля в инженерных задачах.
дипломная работа [190,2 K], добавлен 09.10.2011Дослідження особливостей скалярного та векторного полів. Похідна за напрямом. Градієнт скалярного поля, потенціальне поле. Сутність дивергенції, яка характеризує густину джерел даного векторного поля в розглянутій точці. Ротор або вихор векторного поля.
реферат [244,3 K], добавлен 06.03.2011Специальные векторные поля. Теорема Стокса. Потенциальное, соленоидальное поле. Теорема Остроградского-Гаусса. Поток и определение вектора, направленного в отрицательную сторону оси. Дивергенция, свойства и интенсивностью векторной трубки.
реферат [369,7 K], добавлен 23.02.2011Изучение теории поля с помощью векторного анализа. Векторные поля на плоскости и векторные линии. Вращение, вычисление и свойства дивергенции. Свойство аддитивности циркуляции полей. Ротор и его основные свойства. Рассмотрение формул Грина и Стокса.
курсовая работа [649,8 K], добавлен 18.12.2011Криволинейные и поверхностные интегралы. Криволинейный интеграл I и ІІ рода. Поверхностный интеграл I и ІІ рода. Формулы Грина, Остроградского-Гаусса, Стокса. Основные понятия теории поля. Скалярное поле. Производная скалярного поля по направлению.
курсовая работа [1,2 M], добавлен 09.12.2008Примеры скалярных полей. Производная в точке в направлении орта. Операторы дифференцирования или Гамильтона. Напряженность электрического поля, поле скоростей в движущейся среде. Дивергенция и ротор. Символ Кронекера. Некоторые свойства оператора набла.
контрольная работа [229,2 K], добавлен 21.03.2014Математическое объяснение понятия и свойств скалярного поля. Формулы расчета нормали к поверхности. Вычисление потока векторного поля через прямой круговой цилиндр с заданным радиусом основания. Доказательство теорем Остроградского-Гаусса и Стокса.
реферат [264,0 K], добавлен 11.02.2011Диференціальні операції другого порядку. Потік векторного поля. Формула Остроградського-Гаусса в векторній формі. Властивості соленоїдального поля. Інваріантне означення дивергенції. Формула Стокса у векторній формі. Властивості потенціального поля.
реферат [237,9 K], добавлен 15.03.2011Определение понятия поверхностного интеграла первого и второго рода, их основные свойств, примеры вычисления и его перевода в обыкновенный двойной. Рассмотрение потока векторного поля через поверхность, как механического смысла поверхностного интеграла.
контрольная работа [157,6 K], добавлен 24.01.2011Найти векторные линии в векторном поле. Вычислить длину дуги линии. Вычислить поток векторного поля через поверхность. Найти все значения корня. Представить в алгебраической форме.
лабораторная работа [31,7 K], добавлен 17.08.2002Конструкции и свойства конечных полей. Понятие степени расширения, определенность поля разложения, примитивного элемента, строение конечной мультипликативной подгруппы поля. Составление программы, которая позволяет проверить функцию на примитивность.
курсовая работа [19,2 K], добавлен 18.12.2011Изучение конструкции и простейших свойств конечных полей, степень расширения поля разложения. Определение и свойства фундаментальной группы топологического пространства. Способ построения клеточного комплекса путем последовательного приклеивания клеток.
контрольная работа [926,4 K], добавлен 26.12.2010Изучение методики расчета температурных полей, использующей традиционный конечный элемент и введенный коэффициент учета объемности поля. Порядок математического моделирования задачи механики сплошных сред. Преимущества и недостатки численного решения.
курсовая работа [781,4 K], добавлен 28.12.2012История развития алгебры как научной дисциплины. Расширения Галуа как универсальный метод решения уравнений любой степени. Определение понятия коммуникативной (абелевой) группы. Сущность кольца и его свойства. Примеры использования конечного поля.
реферат [50,0 K], добавлен 28.05.2014Определение роли групп, колец и полей в алгебре и ее приложениях. Рассмотрение свойств групп, колец и полей. Определение бинарной алгебраической операции. Простейшие свойства кольца. Обозначение колей при обычных операциях сложения и умножения.
курсовая работа [634,5 K], добавлен 24.11.2021Вычисление площади фигуры, ограниченной заданными линиями, с помощью двойного интеграла. Расчет двойного интеграла, перейдя к полярным координатам. Методика определения криволинейного интеграла второго рода вдоль заданной линии и потока векторного поля.
контрольная работа [392,3 K], добавлен 14.12.2012Рассмотрение основ векторных полей, физического смысла дивергенции и ротора. Ознакомление с криволинейными и поверхностными интегралами и методами их вычисления. Изучение основных положений теорем Гаусса-Остроградского и Стокса; примеры решения задач.
реферат [1,5 M], добавлен 24.03.2014Получение выражений для рассеянного поля и волн (падающей, отраженной, прошедшей), нахождение волнового поля внутри неоднородного цилиндрического слоя по методу Гаусса с выбором главного элемента и реализация данных алгоритмов в виде прикладной программы.
курсовая работа [162,4 K], добавлен 25.05.2010