Уравнение регрессии

Исходные данные для поиска уравнения регрессии, учет свободного члена. Расчет коэффициентов регрессии и корреляции. Интервальная оценка для коэффициента корреляции (доверительный интервал). Заметное отклонение некоторых значений от линии регрессии.

Рубрика Математика
Вид практическая работа
Язык русский
Дата добавления 31.10.2014
Размер файла 592,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ МОЛОДЕЖИ И СПОРТА УКРАИНЫ

Одесский национальный морской университет

Самостоятельная работа

Уравнение регрессии

Выполнила: студентка ЦПО и ПК

Буюкли Ирина

Приняла: Меркт Елена Витальевна

Одесса 2013

Исходные данные:

Х

6

18

30

44

56

80

100

110

120

129

Y

4

9

15

22

27

37

47

53

57

64

1. Требуется найти уравнение регрессии Y на X.

Для упрощения вычислений составим расчетную таблицу, в которую занесем необходимые численные значения.

xi

yi

xi2

xiyi

6

4

36

24

18

9

324

162

30

15

900

450

44

22

1936

968

56

27

3136

1512

80

37

6400

2960

100

47

10000

4700

110

53

12100

5830

120

57

14400

6840

129

64

16641

8256

?xi=693

?yi=335

?xi2=65873

?xiyi=31702

x=69,3

y=33,5

xi2=6587,3

xy=3170,2

Согласно формуле вычисляем коэффициент регрессии:

где b - коэффициент регрессии;

а по формуле

,

где а - свободный член уравнения регрессии

Таким образом, выборочное уравнение регрессии имеет вид y=0,55+0.48x.

xi

yi

Уi

Уi-yi

6

4

3,43

-0,57

18

9

9, 19

0, 19

30

15

14,95

-0,05

44

22

21,67

-0,33

56

27

27,43

0,43

80

37

38,95

1,95

100

47

48,55

1,55

110

53

53,35

0,35

120

57

58,15

1,15

129

64

62,47

-1,53

Значения Yi вычислены согласно уравнению регрессии.

Заметное отклонение некоторых наблюдаемых значений от линии регрессии объясняется малым числом наблюдений. При исследовании степени линейной зависимости Y от X число наблюдений учитывается. Сила зависимости определяется величиной коэффициента корреляции.

2. Требуется рассчитать коэффициент корреляции.

уравнение регрессия корреляция отклонение

Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

Линейный коэффициент корреляции принимает значения от - 1 до +1.

Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:

0.1 < rxy < 0.3: слабая;

0.3 < rxy < 0.5: умеренная;

0.5 < rxy < 0.7: заметная;

0.7 < rxy < 0.9: высокая;

0.9 < rxy < 1: весьма высокая;

В моей задаче связь между признаком Y фактором X весьма высокая и прямая.

Интервальная оценка для коэффициента корреляции (доверительный интервал).

По таблице Стьюдента с уровнем значимости б=0.01 и степенями свободы k=8 находим tкрит:

tкрит (n-m-1; б/2) = (8; 0.005) = 3.355

где m = 1 - количество объясняющих переменных.

Доверительный интервал для коэффициента корреляции

r (; )

Размещено на Allbest.ru

...

Подобные документы

  • Значения коэффициента регрессии (b) и сводного члена уравнения регрессии (а). Определение стандартной ошибки предсказания являющейся мерой качества зависимости величин Y и х с помощью уравнения линейной регрессии. Значимость коэффициента регрессии.

    задача [133,0 K], добавлен 21.12.2008

  • Методика и основные этапы расчета параметров линейного уравнения парной регрессии с помощью программы Excel. Анализ качества построенной модели, с использованием коэффициента парной корреляции, коэффициента детерминации и средней ошибки аппроксимации.

    лабораторная работа [22,3 K], добавлен 15.04.2014

  • Построение уравнения регрессии. Оценка параметров линейной парной регрессии. F-критерий Фишера и t-критерий Стьюдента. Точечный и интервальный прогноз по уравнению линейной регрессии. Расчет и оценка ошибки прогноза и его доверительного интервала.

    презентация [387,8 K], добавлен 25.05.2015

  • Знакомство с уравнениями линейной регрессии, рассмотрение распространенных способов решения. Общая характеристика метода наименьших квадратов. Особенности оценки статистической значимости парной линейной регрессии. Анализ транспонированной матрицы.

    контрольная работа [380,9 K], добавлен 05.04.2015

  • Сортировка размера пенсии по возрастанию прожиточного минимума. Параметры уравнений парных регрессий. Значения параметров логарифмической регрессии. Оценка гетероскедастичности линейного уравнения с помощью проведения теста ранговой корреляции Спирмена.

    контрольная работа [178,0 K], добавлен 23.11.2013

  • Проверка адекватности линейной регрессии. Вычисление выборочного коэффициента корреляции. Обработка одномерной выборки методами статистического анализа. Проверка гипотезы значимости с помощью критерия Пирсона. Составление линейной эмпирической регрессии.

    задача [409,0 K], добавлен 17.10.2012

  • Построение модели множественной регрессии теоретических значений динамики ВВП, определение средней ошибки аппроксимации. Выбор фактора, оказывающего большее влияние. Построение парных моделей регрессии. Определение лучшей модели. Проверка предпосылок МНК.

    курсовая работа [352,9 K], добавлен 26.01.2010

  • Методы составления закона распределения случайной величины. Вычисление средней арифметической и дисперсии распределения. Расчет средней квадратической ошибки бесповторной выборки. Построение эмпирических линий регрессии, поиск уравнения прямых регрессий.

    контрольная работа [77,6 K], добавлен 20.07.2010

  • Обработка случайных выборок с нормальным законом распределения. Оценка коэффициентов регрессии и доверительных интервалов. Оценка значимости факторов по доверительным интервалам и корреляционного момента. Построение эмпирической интегральной функции.

    курсовая работа [135,7 K], добавлен 03.05.2011

  • Определение вероятности наступления события по формуле Бернулли. Построение эмпирической функции распределения и гистограммы для случайной величины. Вычисление коэффициента корреляции, получение уравнения регрессии. Пример решения задачи симплекс-методом.

    контрольная работа [547,6 K], добавлен 02.02.2012

  • Описание способов нахождения коэффициентов регрессии модели полнофакторного эксперимента. Проверка многофакторных статистических гипотез на однородность ряда дисперсий, значимость и устойчивость математических коэффициентов множественной корреляции.

    контрольная работа [1,2 M], добавлен 05.08.2010

  • Алгебраический расчет плотности случайных величин, математических ожиданий, дисперсии и коэффициента корреляции. Распределение вероятностей одномерной случайной величины. Составление выборочных уравнений прямой регрессии, основанное на исходных данных.

    задача [143,4 K], добавлен 31.01.2011

  • Цели линейной модели множественной регрессии (прогноз, имитация, сценарий развития, управление). Анализ эконометрической сущности изучаемого явления на априорном этапе. Параметризация и сбор необходимой статистической информации, значимость коэффициентов.

    контрольная работа [68,7 K], добавлен 21.09.2009

  • Исследование зависимости потребления бензина в городе от количества автомобилей с помощью методов математической статистики. Построение диаграммы рассеивания и определение коэффициента корреляции. График уравнения линейной регрессии зависимости.

    курсовая работа [593,2 K], добавлен 28.06.2009

  • Установление корреляционных связей между признаками многомерной выборки. Статистические параметры регрессионного анализа линейных и нелинейных выборок. Нахождение функций регрессии и проверка гипотезы о значимости выборочного коэффициента корреляции.

    курсовая работа [304,0 K], добавлен 02.03.2017

  • Аппроксимация функции y = f(x) линейной функцией y = a1 + a2x. Логарифмирование заданных значений. Расчет коэффициентов корреляции и детерминированности. Построение графика зависимости и линии тренда. Числовые характеристики коэффициентов уравнения.

    курсовая работа [954,7 K], добавлен 10.01.2015

  • Теоретические основы юридической статистики, числовые характеристики. Построение гистограммы выборки. Оценка среднего значения, дисперсии и эксцесса. Выборочное уравнение регрессии по данным корреляционных таблиц. Интервальная оценка распределения.

    курсовая работа [1,1 M], добавлен 16.11.2013

  • Нахождение выборочной средней и дисперсии. Построение гистограммы продолжительности телефонных разговоров и нормальной кривой Гаусса. Нахождение групповых средних и коэффициента корреляции. Выборочные характеристики и параметры уравнений регрессии.

    контрольная работа [87,8 K], добавлен 30.11.2013

  • Понятие вероятности события. Петербургский парадокс. Выявление наличия взаимосвязи между признаками в регрессионном анализе. Сравнение коэффициентов корреляции и регрессии. Нахождение тренда с прогнозами в Excel. Методы математического программирования.

    контрольная работа [455,5 K], добавлен 12.02.2014

  • Составление математической модели для предприятия, характеризующей выручку предприятия "АВС" в зависимости от капиталовложений (млн. руб.) за последние 10 лет. Расчет поля корреляции, параметров линейной регрессии. Сводная таблица расчетов и вычислений.

    курсовая работа [862,4 K], добавлен 06.05.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.