Начертательная геометрия
Метод проекций и взаимное положение двух плоскостей. Методы преобразования чертежа, многогранники. Пересечение поверхностей плоскостью и линией. Проекции с числовыми отметками и развертка поверхностей. Тени в ортогональных проекциях и перспективе.
Рубрика | Математика |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 14.11.2014 |
Размер файла | 2,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Общие сведения о пересечении кривых поверхностей. Способ вспомогательных секущих плоскостей. Пересечение поверхностей с параллельными осями. Применение способа концентрических сфер. Последовательность нахождения горизонтальных проекций заданных точек.
методичка [2,0 M], добавлен 18.02.2015Начертательная геометрия - прикладная наука. Комплексный чертеж плоскости. Взаимные пересечения плоскостей, их перпендикулярность и параллельность с прямыми. Сечение поверхности сферы плоскостями. Пересечение поверхностей, аксонометрические проекции.
методичка [4,2 M], добавлен 03.02.2013Представление о взаимном расположении поверхностей в пространстве. Линейчатые и нелинейчатые поверхности вращения. Пересечение кривых поверхностей. Общие сведения о поверхностях. Общий способ построения линии пересечения одной поверхности другою.
реферат [5,4 M], добавлен 10.01.2009Четыре основные задачи, решаемые методами преобразования. Сущность способа замены плоскостей проекций. Решение ряда задач по преобразованию прямой общего положения в прямую уровня, а затем - в проецирующую, выполнив последовательно два преобразования.
реферат [185,5 K], добавлен 17.10.2010Исследование геометрии поверхностей четырехмерного псевдоевклидова пространства индекса один (пространства Минковского). Определение пространства Минковского, его основные особенности, типы прямых и плоскостей. Развертывающиеся и линейчатые поверхности.
дипломная работа [1,7 M], добавлен 17.05.2010Особенности использования метода секущих плоскостей для создания проекции и разветки пересечения поверхностей фигур. Порядок построения изометрии взаимного пересечения поверхностей фигур. Характеристика процесса создания фигуры с вырезом, опоры и стойки.
реферат [21,3 K], добавлен 27.07.2010Подробный анализ поверхностей Каталана и условия, отделяющие этот класс от класса линейчатых поверхностей. Формулы для расчета первой и второй квадратичных форм поверхностей класса КА. Доказательство утверждений о влиянии вида кривых на тип поверхности.
дипломная работа [1,4 M], добавлен 06.06.2011Способы формообразования и отображения поверхностей. Закон образования поверхности. Основные свойства, вытекающие из закона образования поверхности вращения. Линейчатые поверхности с плоскостью параллелизма. Образование каркаса циклических поверхностей.
реферат [2,0 M], добавлен 19.05.2014Порядок формирования ортогональный проекций детали (в горизонтальной, фронтальной и профильной плоскостях проекций), две из которых с разрезами (фронтальная и профильная). Разработка изометрической проекции детали с заданным вырезом части по осям OXYZ.
контрольная работа [512,0 K], добавлен 15.02.2015Выпуклые многогранники и их "ежи". Понятие опорной плоскости и ее свойства. Пересечение конечного числа полупространств. Множество векторов в пространстве. Многогранники с центрально-симметричными гранями и центрально-симметричные многогранники.
презентация [1,4 M], добавлен 22.04.2013История возникновения и понятия дифференциальной геометрии, в которой плоские и пространственные кривые и поверхности изучаются с помощью дифференциального исчисления и методами математического анализа. Применение темы "Теория поверхностей " в школе.
реферат [608,8 K], добавлен 23.04.2015Замкнутые пространственные фигуры, ограниченные плоскими многоугольниками. Линейчатые поверхности вращения. Точка на поверхности тора и сферы. Понятие меридиональной плоскости. Преобразование комплексного чертежа. Метод замены плоскостей проекций.
презентация [69,8 K], добавлен 27.10.2013Основные свойства векторов. Теории кривых и поверхностей. Натуральная параметризация. Формулы Сере-Френе и Эйлера. Уравнение соприкасающейся окружности. Теорема Менье. Индикатриса Дюпена. Индексные обозначения в дифференциальной геометрии поверхностей.
курсовая работа [1,6 M], добавлен 01.02.2014Основные положения теоретического курса по начертательной геометрии. Эпюры - примеры построения, а также подробные описания методов решения. Описание решения типовых задач по каждой теме начертательной геометрии и их основные теоретические положения.
учебное пособие [8,1 M], добавлен 16.10.2011Перпендикулярные прямые в пространстве. Определение и признак прямой, перпендикулярной к плоскости. Теорема о перпендикулярности двух параллельных, двух перпендикулярных прямых к плоскости. Перпендикуляр и наклонные. Угол между прямой и плоскостью.
презентация [160,5 K], добавлен 20.11.2014Виды точек регулярной поверхности. Удельная кривизна выпуклой поверхности. Сфера как единственная овальная поверхность постоянной средней кривизны. Основные понятия и свойства седловых поверхностей. Неограниченность седловых трубок и проблема Плато.
лабораторная работа [1,6 M], добавлен 29.10.2014Понятие плоскости и определение ее положения в пространстве. Задание плоскости ее следами на комплексном чертеже. Плоскости и проекции уровня. Свойство проецирующих плоскостей собирать одноименные проекции всех элементов, расположенных в данной плоскости.
реферат [69,0 K], добавлен 17.10.2010Построение разверток поверхностей. Параллелепипед и его развертка. Чертеж развертки поверхности правильной пирамиды, прямого кругового конуса, прямого кругового цилиндра, правильной призмы, прямого эллиптического цилиндра. Способ нормального сечения.
контрольная работа [1,8 M], добавлен 11.11.2014Аксиомы стереометрии, простейшие следствия. Параллельность прямых и плоскостей. Перпендикулярность прямых, плоскостей. Декартовы координаты и векторы в пространстве. Доказательство того, что через две скрещивающиеся можно провести параллельные плоскости.
книга [4,2 M], добавлен 12.02.2009Основа физики – геометрия. Она определяет способы задания координат. Преобразования их единственны и это преобразования Лоренца внутри изотропного конуса. На поверхности изотропного конуса эти преобразования не обладают единственностью. Расстояние света.
статья [6,1 K], добавлен 22.06.2008