Формирование понятия дроби как рационального числа, на уроках математики в начальной школе

Исторический аспект происхождения дробей в разных странах: Древнем Египте, Греции, Индии, Китае, Риме. Понятия, свойства рациональных и нерациональных чисел. Формирование понятия доли и дроби в вариантных программах обучения математике.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 14.11.2014
Размер файла 89,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Исторический аспект происхождения дробей

2. Понятие рационального числа

3. Множество положительных рациональных чисел как расширение множества натуральных чисел

4. Формирование понятия доли и дроби в вариантных программах обучения математике

Заключение

Список используемой литературы

Введение

В любой системе общего образования математика занимает одно из центральных мест, что несомненно говорит об уникальности этой области знаний.

История развития математики тесно связана с измерением величин. Однако как показала практика, для этих целей натуральных чисел недостаточно: довольно часто единица величины не укладывается целое число раз в измеряемой величине. Чтобы в такой ситуации точно выразить результат измерения, необходимо расширить запас чисел, введя числа, отличные от натуральных. К этому выводу люди пришли ещё в глубокой древности. Измерение длин, площадей, масс и других привело к возникновению дробных чисел, что явилось основой введения понятия рационального числа.

В 5 веке до н. э. математиками школы Пифагора было установлено, что существуют обрезки, длины которых при выбранной единице длины нельзя выразить рациональным числом. В связи с решением этой проблемы, появились числа иррациональные. Рациональные и иррациональные числа назвали действительными.

Понятие рационального числа в начальных классах в явном виде не вводится. На этом этапе изучению математики идет пропедевтическая работа, на проявление на формирование данного понятия. Младшие школьники знакомятся с понятием доли числа и с дробными числами. Затем понятие дроби уточняется и расширяется в основных школах.

В связи с этим учителю необходимо владеть понятием и рационального числа, знать правила выполнения действий над рациональными числами, свойство этих чисел действий. Все это нужно не только для того, чтобы математически грамотно ввести понятие дроби и доли и обучать младших школьников выполнять с ними простейшие действия, но и, что не менее важно, видеть взаимосвязи множеств рациональных и действительных чисел с множеством натуральных чисел. Без их понятия нельзя решить проблему примитивности в обучении математики в начальных и последующих классах школы.

Все вышеизложенное позволило нам определить тему курсовой работы: «Формирование, понятия дроби как рационального числа, на уроках математики в начальной школе».

1. Исторический аспект происхождения дробей

Необходимость в дробных числах возникла у человека на весьма ранней стадии развития. Уже дележ добычи, состоявший из нескольких убитых животных, между участниками охоты, когда число животных оказывалось не кратным числу охотников, могло привести первобытного человека к понятию о дробном числе.

Наряду с необходимостью считать предметы у людей с древних времён появилась потребность измерять длину, площадь, объём, время и другие величины. Результат измерений не всегда удаётся выразить натуральным числом, приходится учитывать и части употребляемой меры. Исторически дроби возникли в процессе измерения.

Потребность в более точных измерениях привела к тому, что начальные единицы меры начали дробить на 2, 3 и более частей. Более мелкой единице меры, которую получали как следствие раздробления, давали индивидуальное название, и величины измеряли уже этой более мелкой единицей.

В связи с этой необходимой работой люди стали употреблять выражения: половина, треть, два с половиной шага. Откуда можно было сделать вывод, что дробные числа возникли как результат измерения величин. Народы прошли через многие варианты записи дробей, пока не пришли к современной записи.

Дроби в Древнем Египте

В Древнем Египте архитектура достигла высокого развития. Для того, чтобы строить грандиозные пирамиды и храмы, чтобы вычислять длины, площади и объемы фигур, необходимо было знать арифметику.

Из расшифрованных сведений на папирусах ученые узнали, что египтяне 4000 лет назад имели десятичную (но не позиционную) систему счисления, умели решать многие задачи, связанные с потребностями строительства, торговли и военного дела.

В Древнем Египте некоторые дроби имели свои особые названия - а именно, часто возникающие на практике 1/2, 1/3, 2/3, 1/4, 3/4, 1/6 и 1/8. Кроме того, египтяне умели оперировать с так называемыми аликвотными дробями (от лат. Aliquot - несколько) типа 1/n - их поэтому иногда также называют «египетскими»; эти дроби имели свое написание: вытянутый горизонтальный овальчик и под ним обозначение знаменателя. Что касается остальных дробей, то их следовало раскладывать в сумму египетских. Древние египтяне уже знали, как поделить 2 предмета на троих, для этого числа - 2/3 - у них был специальный значок. Это была единственная дробь в обиходе египетских писцов, у которой в числителе не стояла единица - все остальные дроби непременно имели в числителе единицу (так называемые основные дроби). Если египтянину нужно было использовать другие дроби, он представлял их в виде суммы основных дробей. Например, вместо 8/15 писали 1/3+1/5. Иногда это бывало удобно. Умели египтяне также умножать и делить дроби. Но для умножения приходилось умножать доли на доли, а потом, быть может, снова использовать таблицу. Ещё сложнее обстояло с делением. Важную работу по исследованию египетских дробей провёл математик XIII века Фибоначчи.

Дроби в Древней Греции

Египетские дроби продолжались использоваться в древней Греции и впоследствии математиками всего мира до Средних веков, несмотря на имеющиеся к ним замечания древних математиков (к примеру, Клавдий Птолемей говорил о неудобстве использования египетских дробей по сравнению с Вавилонской системой). Максим Плануд греческий монах, ученый, математик в 13 веке ввел название числителя и знаменателя.

В Греции употреблялись наряду с единичными, «египетскими» дробями и общие обыкновенные дроби. Среди разных записей употреблялась и такая: сверху знаменатель, под ним - числитель дроби. Например, означало три пятых. Еще за 2-3 столетия до Евклида и Архимеда греки свободно владели арифметическими действиями с дробями.

Дроби в Индии

Современную систему записи дробей создали в Индии. Только там писали знаменатель сверху, а числитель снизу, и не писали дробной черты. Зато вся дробь помещалась в прямоугольную рамку. Иногда использовалось и «трехэтажное» выражение с тремя числами в одной рамке; в зависимости от контекста это могло обозначать неправильную дробь (a + b/c) или деление целого числа a на дробь b/c. Правила действий над дробями почти не отличались от современных.

Дроби у арабов

Записывать дроби как сейчас стали арабы. Средневековые арабы пользовались тремя системами записи дробей. Во-первых, на индийский манер записывая знаменатель под числителем; дробная черта появилась в конце XII - начале XIII в. Во-вторых, чиновники, землемеры, торговцы пользовались исчислением аликвотных дробей, похожим на египетское, при этом применялись дроби со знаменателями, не превышающими 10 (только для таких дробей арабский язык имеет специальные термины); часто использовались приближенные значения; арабские ученые работали над усовершенствованием этого исчисления. В-третьих, арабские ученые унаследовали вавилонско-греческую шестидесятеричную систему, в которой, как и греки, применяли алфавитную запись, распространив ее и на целые части.

Дроби в Вавилоне

Вавилоняне пользовались всего двумя цифрами. Вертикальная черточка обозначала одну единицу, а угол из двух лежащих черточек - десять. Эти черточки у них получались в виде клиньев, потому что вавилоняне писали острой палочкой на сырых глиняных дощечках, которые потом сушили и обжигали.

В древнем Вавилоне предпочитали постоянный знаменатель, равный 60-ти. Шестидесятеричными дробями, унаследованными от Вавилона, пользовались греческие и арабские математики и астрономы. Исследователи по-разному объясняют появление у вавилонян шестидесятеричной системы счисления. Скорее всего, здесь учитывалось основание 60, которое кратно 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 и 60, что значительно облегчает всякие расчеты.

Но было неудобно работать над натуральными числами, записанными по десятичной системе, и дробями, записанными по шестидесятеричной. А работать с обыкновенными дробями было уже совсем трудно. Поэтому голландский математик Симон Стевин предложил перейти к десятичным дробям.

Дроби в Древнем Китае

В Древнем Китае уже пользовались десятичной системой мер, обозначали дробь словами, используя меры длины чи: цуни, доли, порядковые, шерстинки, тончайшие, паутинки. Дробь вида 2,135436 выглядела так: 2 чи, 1 цунь, 3 доли, 5 порядковых, 4 шерстинки, 3 тончайших, 6 паутинок. Так записывались дроби на протяжении двух веков, а в V веке китайский ученый Цзу-Чун-Чжи принял за единицу не чи, а чжан = 10 чи, тогда эта дробь выглядела так: 2 чжана, 1 чи, 3 цуня, 5 долей, 4 порядковых, 3 шерстинки, 6 тончайших, 0 паутинок.

Дроби в Древнем Риме

Интересная система дробей была в Древнем Риме. Она основывалась на делении на 12 долей единицы веса, которая называлась асс. Двенадцатую долю асса называли унцией. А путь, время и другие величины сравнивали с наглядной вещью - весом. Например, римлянин мог сказать, что он прошел семь унций пути или прочел пять унций книги. При этом, конечно, речь шла не о взвешивании пути или книги. Имелось в виду, что пройдено 7/12 пути или прочтено 5/12 книги. А для дробей, получающихся сокращением дробей со знаменателем 12 или раздроблением двенадцатых долей на более мелкие, были особые названия.

Даже сейчас иногда говорят: «Он скрупулёзно изучил этот вопрос». Это значит, что вопрос изучен до конца, что не одной самой малой неясности не осталось. А происходит странное слово «скрупулёзно» от римского названия 1/288 асса - «скрупулус». В ходу были и такие названия: «семис» - половина асса, «секстанс» - шестая его доля, «семиунция» - половина унции, т. е. 1/24 асса и т. д. Всего применялось 18 различных названий дробей. Чтобы работать с дробями, надо было помнить для этих дробей таблицу сложения и таблицу умножения. Поэтому римские купцы твёрдо знали, что при сложении триенса (1/3 асса) и секстанса получается семис, а при умножении беса (2/3 асса) на сескунцию (2/3 унции, т.е.1/8 асса) получается унция. Для облегчения работы составлялись специальные таблицы, некоторые из которых дошли до нас.

Дроби на Руси

В русском языке слово «дробь» появилось лишь в VIII веке. Происходит слово «дробь» от слова «дробить, разбивать, ломать на части». У других народов название дроби также связано с глаголами «ломать», «разбивать», «раздроблять». В первых учебниках дроби назывались «ломанные числа». В старых руководствах находили следующие названия дробей на Руси:

- половина, полтина - треть;

- четь - полтреть;

- полчеть - полполтреть;

- полполчеть - полполполтреть (малая треть);

- полполполчеть (малая четь) - пятина;

- седьмина - десятина.

Древние математики 100/11 не считали дробью. Остаток от деления 1 фунт предлагается поменять на яйца, которых можно было купить 91 штуки. Если 91:11 то получится по 8 яиц и 3 яйца в остатке. Автор рекомендует отдать их тому, кто делил, или же поменять на соль, чтобы посолить яйца.

Десятичные дроби

Уже несколько тысячелетий человечество пользуется дробными числами, а вот записывать их удобными десятичными знаками оно додумалось значительно позже.

Почему же люди перешли от обыкновенных дробей к десятичным? Да потому, что действия с ними более простые, особенно сложение и вычитание.

Появились десятичные дроби в трудах арабских математиков в Средние века и независимо от них в древнем Китае. Но и раньше, в древнем Вавилоне, использовали дроби такого же типа, только шестидесятеричные.

Позднее учёный Гартман Бейер (1563-1625) выпустил сочинение «Десятичная логистика», где писал: «…я обратил внимание на то, что техники и ремесленники, когда измеряют какую-нибудь длину, то очень редко и лишь в исключительных случаях выражают её в целых числах одного наименования; обыкновенно им приходится или брать мелкие меры, или обращаться к дробям. Точно так же астрономы измеряют величины не только в градусах, но и в долях градуса, т.е. минутах, секундах и т. п. Их деление на 60 частей не так удобно, как деление на 10, на 100 частей и т. д., потому что в последнем случае гораздо легче складывать, вычитать и вообще производить арифметические действия; мне кажется, что десятичные доли, если бы ввести вместо шестидесятеричных, пригодились бы не только для астрономии, но и для всякого рода вычислений».

Сегодня мы пользуемся десятичными дробями естественно и свободно. Однако то, что кажется естественным нам, служило настоящим камнем преткновения для учёных Средневековья. В Западной Европе 16 в. вместе с широко распространённой десятичной системой представления целых чисел в расчётах повсюду применялись шестидесятеричные дроби, восходящие ещё к древней традиции вавилонян. Понадобился светлый ум нидерландского математика Симона Стевина, чтобы привести запись и целых, и дробных чисел в единую систему. По-видимому, толчком создания десятичных дробей послужили составленные им таблицы сложных процентов. В 1585 г. он опубликовал книгу «Десятина», в которой объяснил десятичные дроби.

С начала XVII века начинается интенсивное проникновение десятичных дробей в науку и практику. В Англии в качестве знака, отделяющего целую часть от дробной, была введена точка. Запятая, как и точка, в качестве разделительного знака была предложена в 1617 году математиком Непером.

Развитие промышленности и торговли, науки и техники требовали все более громоздких вычислений, которые с помощью десятичных дробей легче было выполнять. Широкое применение десятичные дроби получили в XIX веке после введения тесно связанной с ними метрической системы мер и весов. Например, в нашей стране в сельском хозяйстве и промышленности десятичные дроби и их частный вид - проценты - применяются намного чаще, чем обыкновенные дроби.

Дроби в музыке

Пифагорейцы, много занимавшиеся музыкой и обожествлявшие число, считали, что Земля имеет форму шара и находится в центре Вселенной: ведь нет никаких оснований, чтобы она была смещена или вытянута в какую-то одну сторону. Солнце же, Луна и 5 планет (Меркурий, Венера, Марс, Юпитер и Сатурн) движутся вокруг Земли. Расстояния от них до нашей планеты таковы, что они как бы составляют семиструнную арфу, и при их движении возникает прекрасная музыка - музыка сфер. Обычно люди не слышат её из-за суеты жизни, и лишь после смерти некоторые из них смогут насладиться ею. А Пифагор слышал её при жизни.

Его ученики - пифагорейцы, много занимавшиеся музыкой и обожествлявшие число, исследовали, насколько повышается тон струны, если её прижать посередине, или на четверть расстояния одного из концов, или на треть. Обнаружилось, что одновременное звучание двух струн приятно для слуха, если длины их относятся как 1:2, или 2:3, или 3:4, что соответствует музыкальным интервалам в октаву, квинту и кварту. Гармония оказалась тесно связанной с дробями, что подтверждало основную мысль пифагорейцев: «число правит миром»…

Так дроби сыграли определяющую роль в музыке. И сейчас в общепринятой нотой записи длинная нота - целая - делится на половинки (вдвое короче), четверти, восьмые, шестнадцатые и тридцать вторые.

2. Понятие рационального числа

В математике существует много разных чисел. Одни из них называются рациональными.

Рациональное число - это число, представление которого возможно в виде обыкновенной дроби. Например, 3/4 или 5/6. Числитель этой дроби - это целое число, а, в свою очередь, знаменатель - натуральное число. Мы знаем, что натуральное число - это число, которое используют при счете любых предметов. Целые числа - это любые натуральные и противоположные им числа, а также 0.

Также, под множеством рациональных чисел является множество целых чисел. Рациональные числа имеют четыре основных свойства - это сложение, умножение, деление (кроме ноля) и вычитание. Также, они могут быть упорядочены. Для каждого числа из множества рациональных чисел существует обратное и противоположное число.

Область, в которой применены рациональные числа огромная. Такие числа применяют в физике, математике, химии, экономике и т. д. Но самое большое значение эти числа имеют в банковских и финансовых системах.

Рациональное число (лат. Ratio - отношение, деление, дробь) - число, представляемое обыкновенной дробью mn, числитель m - целое число, а знаменатель n - натуральное число, к примеру 2/3. Понятие дроби возникло несколько тысяч лет назад, когда, сталкиваясь с необходимостью измерять некоторые вещи (длину, вес, площадь и т. п.), люди поняли, что не удаётся обойтись целыми числами и необходимо ввести понятие доли: половины, трети и т. п. Дробями и операциями над ними пользовались, например, шумеры, древние египтяне и греки.

3. Множество положительных рациональных чисел как расширение множества натуральных чисел

Чтобы множество Q+ положительных рациональных чисел являлось расширением множества N натуральных чисел, необходимо выполнение ряда условий.

Первое условие - это существование между N и Q+ отношения включения. Докажем, что .

Пусть длина отрезка х при единичном отрезке е выражается натуральным числом т. Разобьем единичный отрезок на п равных частей. Тогда n-ая часть единичного отрезка будет укладываться в отрезке х точно раз, т. е. длина отрезка х будет выражена дробью . Значит, длина отрезка х выражается и натуральным числом т, и положительным рациональным числом. Но это должно п быть одно и то же число.

Поэтому целесообразно считать, что дроби вида являются записями натурального числа т. Следовательно, .

Так, например, натуральное число 6 можно представить в виде следующих дробей: , и т. д.

Отношение между множествами N и Q+ представлено на рисунке 28.

Числа, которые дополняют множество натуральных чисел до множества положительных рациональных, называются дробными.

Второе условие, которое должно быть выполнено при расширении множества натуральных чисел, - это согласованность операций, т. е. результаты арифметических действий, произведенных по правилам, существующим для натуральных чисел, должны совпадать с результатами действий над ними, но выполненных по правилам, сформулированным для положительных рациональных чисел. Нетрудно убедиться в том, что и это условие выполняется.

Пусть а и b - натуральные числа, - их сумма, полученная по правилам сложения в N. Вычислим сумму чисел а и b по правилу сложения в Q+.

Так как , то

Третье условие, которое должно быть выполнено при расширении множества натуральных чисел - это выполнимость в Q+ операции, не всегда осуществимой в N. И это условие соблюдено: деление, которое не всегда выполняется в множестве N, в множестве Q+ выполняется всегда.

Сделаем еще несколько дополнений, раскрывающих взаимосвязи между натуральными и положительными рациональными числами.

1. Черту в записи дроби можно рассматривать как знак деления.

Действительно, возьмем два натуральных числа т и п и найдем их частное по правилу (4) деления положительных рациональных чисел:

Обратно, если дана дробь , то ее можно рассматривать как частное натуральных чисел т и п.

2. Любую неправильную дробь можно представить либо в виде натурального числа, либо в виде смешанной дроби.

Пусть - неправильная дробь. Тогда т > п. Если т кратно п, то в этом случае дробь является записью натурального числа. Если число т не кратно п, то разделим т на п с остатком: , где . Подставим вместо т в запись и применим правило (1) сложения положительных рациональных чисел:

Так как , то дробь - правильная. Следовательно, неправильная дробь оказалась представленной в виде суммы натурального числа q и правильной дроби . Это действие называется выделением целой части из неправильной дроби. Например, .

Сумму натурального числа и правильной дроби принято записывать без знака сложения: т. е. вместо пишут и называют такую запись смешанной дробью.

Справедливо также утверждение: всякую смешанную дробь можно записать в виде неправильной дроби. Например: .

Основными математическими объектами с незапамятных времен являются числа, множества и элементы множества, их свойства. Число - абстракция, используемая для количественной характеристики объектов. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа изменялось и обогащалось и превратилось в важнейшее математическое понятие. Письменными знаками (символами) для записи чисел служат цифры. Современная математика оперирует несколько другими математическими понятиями. Если внимательно проанализировать их суть, то они, в общем-то, являются эквивалентными или изоморфными понятиям «число», «множество», «отображение», «свойство».

В теоретико-множественном смысле числа являются классом множеств с определенными свойствами. Эти свойства выражаются через тип упорядоченности, размерность, топологические и метрические свойства основанных на них множеств. Основное свойство чисел - это их мощность, которая может быть конечной, счетной или континуальной. Соответственно, числа могут быть представителями любого класса множеств с подходящей мощностью. Даже множества с мощностью больше континуума можно представить как множество всех функций, определенных на числовом множестве. В этом проявляется универсальность понятия «число».

Другое важное свойство чисел - это ее размерность. Есть несколько классов чисел с различающимися свойствами. Есть линейные (одномерные) числа - это натуральные N, положительные N+, целые Z, рациональные R и вещественные Q числа. Есть составные многомерные или гиперкомплексные числа - это комплексные числа C, кватернионы H, бикватернионы B, невырожденные квадратные матрицы M, числа Клиффорда K и другие. Тензор (в том числе и вектор) в обычном понимании не является числом.

Интересным видом чисел являются гипердействительные числа. Они появляются в нестандартном анализе, использующем понятия «бесконечно малые» и «бесконечно большие» чисел как расширение множества действительных до этих «бесконечных» чисел.

Попробуем определить, что такое «число». Точнее, виды чисел.

Самыми простыми числами являются целые, рациональные, вещественные и комплексные числа. Они коммутативны, ассоциативны и дистрибутивны.

Основными видами чисел, обладающими похожими свойствами, являются четыре вида чисел. Это действительные числа, комплексные, кватернионы и октавы. Коммутативность умножения для последних двух видов чисел не выполняется. Но они все обладают алгебрами без делителей нуля.

Дальнейшие расширения чисел могут не иметь и свойство ассоциативности. Дистрибутивность соблюдается.

Основные виды чисел

Натуральные числа, получаемые при естественном счёте; множество натуральных чисел обозначается N. Т.о. (иногда к множеству натуральных чисел также относят ноль, то есть N = {0, 1, 2, 3, …}). Натуральные числа замкнуты относительно сложения и умножения (но не вычитания или деления). Натуральные числа коммутативны и ассоциативны относительно сложения и умножения, а умножение натуральных чисел дистрибутивно относительно сложения.

Целые числа получаемые объединением натуральных чисел с множеством отрицательных чисел и нулём, обозначаются Z = {-2, -1, 0, 1, 2, …}. Целые числа замкнуты относительно сложения, вычитания и умножения (но не деления).

Рациональные числа - числа, представленные в виде дроби m/n (n ? 0), где m - целое число, а n - натуральное число. Для рациональных чисел определены все четыре «классические» арифметические действия: сложение, вычитание, умножение и деление (кроме деления на ноль). Для обозначения рациональных чисел используется знак Q.

Действительные (вещественные) числа представляют собой расширение множества рациональных чисел, замкнутое относительно некоторых (важных для математического анализа) операций предельного перехода. Множество вещественных чисел обозначается R. Его можно рассматривать как пополнение поля рациональных чисел Q при помощи нормы, являющейся обычной абсолютной величиной. Кроме рациональных чисел, R включает множество иррациональных чисел, не представимых в виде отношения целых. Кроме подразделения на рациональные и иррациональные, действительные числа также подразделяются на алгебраические и трансцендентные. При этом каждое трансцендентное число является иррациональным, каждое рациональное число - алгебраическим.

Комплексные числа, являющиеся расширением множества действительных чисел. Они могут быть записаны в виде z = x + iy, где i - т. н. мнимая единица, для которой выполняется равенство i2 = -1. Комплексные числа используются при решении задач квантовой механики, гидродинамики, теории упругости и пр.

Для перечисленных множеств чисел справедливо следующее выражение:.

Гипердействительные числа - это числа вида:

1) , где a - обычное число, a - бесконечно малое число;

2) - бесконечно большое число.

Гипердействительные числа не являются числами в обычном понимании. Они применяются во многих разделах математики, особенно в дифференциальном и интегральном исчислениях, а также везде, где используются предельные числовые последовательности, даже при определении вещественных чисел.

Множество рациональных чисел является естественным обобщением множества целых чисел. Легко видеть, что если у рационального числа a = m/n знаменатель n = 1, то a = m является целым числом. В этой связи возникают некоторые обманчивые предположения. Во-первых, кажется, что рациональных чисел больше чем целых, на самом же деле и тех и других счётное число. Во-вторых, возникает предположение, что такими числами можно измерить абсолютно точно любое расстояние в пространстве. На самом деле, для этого используются вещественные числа, рациональных же чисел для этого недостаточно.

Виды дроби

Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Дробь, не являющаяся правильной, называется неправильной.

Например, дроби 3/5, 7/8 и 1/2 - правильные дроби, в то время как 8/3, 9/5, 2/1и 1/1 - неправильные дроби. Всякое целое число можно представить в виде неправильной обыкновенной дроби со знаменателем 1.

Дробь, записанная в виде целого числа и правильной дроби, называется смешанной дробью и понимается как сумма этого числа и дроби. Например,

В строгой математической литературе такую запись предпочитают не использовать из-за схожести обозначения смешанной дроби с обозначением произведения целого числа на дробь.

Несмотря на то, что рациональных чисел бесконечное множество и то, что мы можем записать только не бесконечно большие числа, можно считать, что мы можем записать любое рациональное число указанным выше способом, потому что любое рациональное число явно не бесконечное и запись ее будет содержать конечное число символов.

Высота дроби

Высота обыкновенной дроби - то модуль суммы числителя и знаменателя этой дроби. Высота рационального числа - это модуль суммы числителя и знаменателя несократимой обыкновенной дроби, соответствующей этому числу.

Например, высота дроби (-15/6) равна 15 + 6 = 21. Высота же соответствующего рационального числа равна 5 + 2 = 7, так как дробь сокращается на 3.

Как следствие, множество рациональных чисел является счетным множеством. дробь рациональный нерациональный математика

Это множество обладает свойством непрерывности. Это означает, что между любыми неравными между собой числами можно найти третье число, не равное предыдущему. Более того, сечение рациональных чисел на две половинки может быть открытым по одной или обеим границам этого сечения.

Множество рациональных чисел является абелевой группой по операциям «сложение» и «умножение» по отдельности.

Множество рациональных чисел является полем по операциям «сложение» и «умножение».

Формальное определение

Формально рациональные числа определяются как множество классов эквивалентности пар {(m, n) | m Z, n N} по отношению эквивалентности (m, n) ~ (m', n'), если mn' = m' n. При этом операции сложения и умножения определяются следующим образом:

(m1, n1) + (m2, n2) = (m1, n2 + m2, n1, n1n2),

(m1, n1)•(m2, n2) = (m1m2, n1n2).

Свойства рациональных чисел

Рациональные числа удовлетворяют шестнадцати основным свойствам, которые легко могут быть получены из свойств целых чисел.

1. Упорядоченность. Для любых рациональных чисел a и b существует правило, позволяющее однозначно идентифицировать между ними одно и только одно из трёх отношений: « < », « > » или « = ». Это правило называется правилом упорядочения и формулируется следующим образом: два неотрицательных числа a = ma/na и b = mb/nb связаны тем же отношением, что и два целых числа ma/nb и mb/na;два неположительных числа a и b связаны тем же отношением, что и два неотрицательных числа |b| и |a|; если же вдруг a неотрицательно, а b - отрицательно, то a >b.

a, b Q: a < b ? b < a ? a = b

2. Транзитивность отношения порядка. Для любой тройки рациональных чисел a, b и c если a меньше b и b меньше c, то a меньше c, а если a равно b и b равно c, то a равно c.

x, y, z Q: (x < y) (y < z)> x < z (транзитивность порядка);

3. Операция сложения. Для любых рациональных чисел a и b существует так называемое правило суммирования, которое ставит им в соответствие некоторое рациональное число c. При этом само число c называется суммой чисел a и b и обозначается (a + b), а процесс отыскания такого числа называется суммированием. Правило суммирования имеет следующий вид: (m1/n1) + (m2/n2) = (m1n2 + m2n1)/(n1n2).

a, b Q: (a + b) Q

4. Коммутативность сложения. От перемены мест рациональных слагаемых сумма не меняется.

(x, y Q): (x + y) = (y + x)

5. Ассоциативность сложения. Порядок сложения трёх рациональных чисел не влияет на результат.

(x, y, z Q): (x + y) + z = x + (y + z)

6. Наличие нуля. Существует рациональное число 0, которое сохраняет любое другое рациональное число при суммировании.

(0 Q) (x Q) : (x + 0 = x)

7. Наличие противоположных чисел. Любое рациональное число имеет противоположное рациональное число, при суммировании с которым даёт 0.

(x, y Q) (-x Q): (x + (-x) = 0).

8. Связь отношения порядка с операцией сложения. К левой и правой частям рационального неравенства можно прибавлять одно и то же рациональное число.

x, y, z Q: (x < y) > (x + z) < y + z

9. Операция умножения. Для любых рациональных чисел a и b существует так называемое правило умножения, которое ставит им в соответствие некоторое рациональное число c. При этом само число c называется произведением чисел a и b и обозначается (a·b), а процесс отыскания такого числа также называется умножением. Правило умножения имеет следующий вид:ma/na·mb/nb = ma·mb / na·na.

a, b Q: (a·b) Q

10. Коммутативность умножения. От перемены мест рациональных множителей произведение не меняется.

x, y Q: (xy) = (yx);

11. Ассоциативность умножения. Порядок перемножения трёх рациональных чисел не влияет на результат.

x, y, z Q: (xy)•z = x•(yz);

12. Наличие единицы. Существует рациональное число 1, которое сохраняет любое другое рациональное число при умножении.

1 Q\{0}: x Q: x•1 = x;

13. Наличие обратных чисел. Любое рациональное число имеет обратное рациональное число, при умножении на которое даёт 1.

x Q\{0}:x-1: xx-1 = 1.

14. Связь отношения порядка с операцией умножения. Левую и правую части рационального неравенства можно умножать на одно и то же положительное рациональное число.

x, y, z Q: (x < y) (z > 0) > yz < xz

15. Дистрибутивность умножения относительно сложения. Операция умножения согласована с операцией сложения посредством распределительного закона:

(x, y, z Q: (x + y) • z = xz + yz

16. Аксиома Архимеда. Каково бы ни было рациональное число a, можно взять столько единиц, что их сумма превзойдёт a.

a Q n N: > a

Дополнительные свойства

Все остальные свойства, присущие рациональным числам, не выделяют в основные, потому что они, вообще говоря, уже не опираются непосредственно на свойства целых чисел, а могут быть доказаны исходя из приведённых основных свойств или непосредственно по определению некоторого математического объекта. Таких дополнительных свойств очень много. Здесь имеет смысл привести лишь некоторые из них.

Второе отношение порядка «>» также транзитивно.

x, y, z Q: (x > y) (y > z)> x > z (транзитивность порядка);

Произведение любого рационального числа на ноль равно нулю.

x Q: x · 0 = 0;

Отсутствие делителей нуля.

Рациональные неравенства одного знака можно почленно складывать.

a, b, c, d Q: a > b ? c > d > a + c > b + d

Множество рациональных чисел Q является полем (а именно, полем частных кольца целых чисел Z) относительно операций сложения и умножения дробей.

Каждое рациональное число является алгебраическим.

Математика в силу своей специфики предоставляет большие возможности для учителя в плане развития мышления детей. Развивать мышление учащихся можно при изучении, практически, любой математической темы. Мы остановились на рассмотрении долей и дробей, и именно это обусловило выбор темы нашего исследования: «Развитие мышления младших школьников в процессе пропедевтической работы по изучению дробей».

4. Формирование понятия доли и дроби в вариантных программах обучения математике

В соответствии с программой по математике, в начальных классах должна быть проведена подготовка к изучению дробей в IV и V классах. Это значит, в начальных классах надо создать конкретное представление о доле и дроби. С этой целью предусматривается во 2 классе ознакомить детей с долями, их записью, научить сравнивать дроби, решать задачи на нахождение доли числа и числа по доле; в 3 классе ознакомить с дробями, их записью, научить сравнивать дроби, научить решать задачи на нахождение дроби числа. Все названные вопросы раскрываются на наглядной основе.

Методика изучения темы «Дроби» по традиционной программе

М.И Моро, М.А. Бантовой предполагает в начальных классах создание конкретных представлений о доли и дроби. Уже во 2 классе учащиеся знакомятся с долями и их записью. Дети учатся сравнивать доли, решать задачи на нахождение доли числа, и числа по доли. В 3 классе ребята знакомятся с дробями, их записью, учат сравнивать дроби, решать задачи на нахождение дроби числа.

Размещено на Allbest.ru

...

Подобные документы

  • Число как основное понятие математики. Натуральные числа. Простые числа Мерсенна, совершенные числа. Рациональные числа. Дробные числа. Дроби в Древнем Египте, Древнем Риме. Отрицательные числа. Комплексные, векторные, матричные, трансфинитные числа.

    реферат [104,5 K], добавлен 12.03.2004

  • Теоретико-методологические основы формирования математического понятия дроби на уроках математики. Процесс формирования математических понятий и методика их введения. Практическое исследование введения и формирования математического понятия дроби.

    дипломная работа [161,3 K], добавлен 23.02.2009

  • История отрицательных чисел: их отрицание в Древнем Египте, Вавилоне, Греции, узаконивание в Китае и Индии. Математические действия с ними. Подходы к определению положению нуля как натурального числа. Изучение отрицательных чисел в школьной программе.

    презентация [178,6 K], добавлен 13.05.2011

  • Обозначение десятичной дроби в разное время. Использование десятичной системы мер в Древнем Китае. Запись дроби в одну строку числами в десятичной системе и правила действия с ними. Симон Стевин как фландрский учений, изобретатель десятичных дробей.

    презентация [169,0 K], добавлен 22.04.2010

  • Первая дробь, с которой познакомились люди в Египте. Числитель и знаменатель дроби. Правильная и неправильная дробь. Смешанное число. Приведение к общему знаменателю. Неполное частное. Целая и дробная часть. Обратные дроби. Умножение и деление дробей.

    презентация [48,9 K], добавлен 11.10.2011

  • На протяжении многих веков на языках народов ломаным числом именовали дробь. Необходимость в дробях возникла на ранней ступени развития человечества. Виды дробей. Запись дробей в Египте, Вавилоне. Римская система дробей. Дроби на Руси - "ломаные числа".

    презентация [1022,3 K], добавлен 21.01.2011

  • Особенности возникновения и использования дробей в Египте. Особенности применения шестидесятеричных дробей в Вавилоне, греческими и арабскими математиками и астрономами. Отличительные черты дробей в Древнем Риме и Руси. Дробные числа в современном мире.

    презентация [1,3 M], добавлен 29.04.2014

  • Класс рациональных функций. Практический пример решения интегралов. Линейная замена переменной. Сущность и главные задачи метода неопределенных коэффициентов. Особенности, последовательность представления подынтегральной дроби в виде суммы простых дробей.

    презентация [240,6 K], добавлен 18.09.2013

  • Из истории десятичных и обыкновенных дробей. Действия над десятичными дробями. Сложение (вычитание) десятичных дробей. Умножение десятичных дробей. Деление десятичных дробей.

    реферат [8,3 K], добавлен 29.05.2006

  • Сутність, особливості та історична поява чисел "пі" та "е". Доведення ірраціональності та трансцендентності чисел "пі" та "е". Методи наближеного обчислення чисел "пі" та "е" за допомогою числових рядів та розкладу в нескінченні ланцюгові дроби.

    курсовая работа [584,5 K], добавлен 18.07.2010

  • Первообразный и неопределенный интеграл. Некоторые свойства неопределенного интеграла. Интегрирование методом замены переменой, способом подстановки, по частям. Интегрирование рациональных дробей. Простейшие рациональные дроби и их интегрирование.

    курсовая работа [187,8 K], добавлен 26.09.2014

  • Предпосылки зарождения математики в Древнем Египте. Задачи на вычисление "аха". Наука древних египтян. Задача из папируса Райнда. Геометрия в Древнем Египте. Высказывания великих ученых о важности математики. Значение египетской математики в наше время.

    реферат [18,3 K], добавлен 24.05.2012

  • Развитие математики в древнем Китае со II в. до н.э. по VII в.н.э. Древнее математическое "Десятикнижье". Зарождение группового десятичного счёта и мультипликативного принципа фиксирования чисел в эпоху Инь. Классическая "Математика в девяти книгах".

    реферат [22,5 K], добавлен 09.11.2010

  • Изучение возникновения математики и использования математических методов Древнем Китае. Особенности задач китайцев по численному решению уравнений и геометрических задач, приводящих к уравнениям третьей степени. Выдающиеся математики Древнего Китая.

    реферат [27,6 K], добавлен 11.09.2010

  • Теоретические основы формирования устных вычислительных навыков. Сущность понятия в психолого-педагогической литературе. Разработка системы упражнений по формированию устных вычислительных навыков. Опытно-экспериментальная работа и анализ результатов.

    дипломная работа [78,5 K], добавлен 24.06.2008

  • Первообразная и неопределенный интеграл. Таблица интегралов. Некоторые свойства неопределенного интеграла. Интегрирование методом замены переменой или способом подстановки. Интегрирование по частям. Рациональные дроби. Простейшие рациональные дроби.

    реферат [128,7 K], добавлен 16.01.2006

  • Закон сохранения количества чисел Джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Структура натурального ряда чисел. Изоморфные свойства рядов четных и нечетных чисел. Фрактальная природа распределения простых чисел.

    монография [575,3 K], добавлен 28.03.2012

  • Различные трактовки понятия функции в школьном курсе математики. Функция и задание ее аналитическим выражением. Область определения функции и область значений функции. Тесты по теме "Числовые функции. Четные и нечетные функции. Периодические функции".

    дипломная работа [213,1 K], добавлен 07.09.2009

  • Історія становлення поняття дійсного числа. Властивості ланцюгових дробів загального виду з додатними елементами. Зображення дійсних чисел ланцюговими дробами загального виду і системними дробами. Задачі, при розв’язанні яких використовуються ці дроби.

    курсовая работа [415,0 K], добавлен 02.03.2014

  • Свойства делимости целых чисел в алгебре. Особенности деления с остатком. Основные свойства простых и составных чисел. Признаки делимости на ряд чисел. Понятия и способы вычисления наибольшего общего делителя (НОД) и наименьшего общего кратного (НОК).

    лекция [268,6 K], добавлен 07.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.