Нормальный закон распределения

Знакомство с параметрами нормального закона распределения. Особенности проверки гипотезы о равенстве дисперсий двух генеральных совокупностей, распределенных по нормальному закону. Общая характеристика кривых дифференциального закона распределения.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 01.12.2014
Размер файла 686,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Нормальный закон распределения

Введение

Нормальное (гауссовское) распределение занимает центральное место в теории и практике вероятностно-статистических исследований. В качестве непрерывной аппроксимации к биномиальному распределению его впервые рассматривал А.Муавр в 1733 г. Через некоторое время нормальное распределение снова открыли и изучили К.Гаусс (1809 г.) и -П.Лаплас, которые пришли к нормальной функции в связи с работой по теории ошибок наблюдений. Цель их объяснения механизма формирования нормально распределенных случайных величин заключается в следующем. Постулируется, что значения исследуемой непрерывной случайной величины формируются под воздействием очень большого числа независимых случайных факторов, причем сила воздействия каждого отдельного фактора мала и не может превалировать среди остальных, а характер воздействия - аддитивный (т.е. при воздействии случайного фактора F на величину а получается величина, где случайная "добавка" мала и равновероятна по знаку). Во многих случайных величинах, изучаемых в технике и других областях, естественно видеть суммарный аддитивный эффект большого числа независимых причин.

Но центральное место нормального закона не следует объяснять его универсальной приложимостью. В этом смысле нормальный закон - один из многих типов распределения, имеющихся в природе, однако с относительно большим удельным весом практической приложимости. Однако полнота теоретических исследований, относящихся к нормальному закону, а также сравнительно простые математические свойства делают его наиболее привлекательным и удобным в применении. Даже в случае отклонения исследуемых экспериментальных данных от нормального закона существует, по крайней мере, два пути его целесообразной эксплуатации: во-первых, использовать нормальный закон в качестве первого приближения (при атом нередко оказывается, что подобное допущение дает достаточно точные с точки зрения конкретных целей исследования результаты); во-вторых. подобрать такое преобразование исследуемой случайной величины, которое видоизменяет исходный "не нормальные" закон распределения, превращая его в нормальный. Удобно для статистических приложений и свойство "самовоспроизводимости" нормального закона, заключающееся в том, что сумма любого числа нормально распределенных случайных величин тоже подчиняется нормальному закону распределения. Кроме того, с помощью закона нормального распределения выведен целый ряд других важных распределений, построены различные статистические критерии.

1.Основные параметры и определения нормального закона распределения

Нормальное распределение . В приложениях статистики чаще всего используется нормальное (гауссовское) распределение. Непрерывная случайная величина Х называется распределенной по нормальному закону с параметрами, если ее плотность распределения есть

Статистическая гипотеза. Часто необходимо знать закон распределения генеральная совокупности. Если он неизвестен, но есть основания предположить, что он имеет определенный вид (назовем его А), выдвигают гипотезу: генеральная совокупность распределена по закону А. Таким образом, в этой гипотезе речь вдет о виде предполагаемого распределения. Возможен случай, когда закон распределения известен, а его параметры неизвестны. Если есть основания предположить, то неизвестный параметр Q равен определенному значению Q0 , выдвигают гипотезу: Q = Q0. Таким образом, в этой гипотезе речь идет о предполагаемой величине параметра одного известного распределения. Возможны и другие гипотезы: о равенстве параметров двух или нескольких распределений, о независимости выборок и многие другие. Статистической называют гипотезу о виде неизвестного распределения или о параметрах известных распределений. Например статистическими будут гипотезы; генеральная распределена по закону Пуассона, дисперсии двух нормальных совокупностей равны между собой. В первой гипотезе сделано предположение о виде неизвестного распределения, во второй - о параметрах двух известных распределений. Наряду с выдвинутой гипотезой рассматривают и противоречивую ей гипотезу. Если выдвинутая гипотеза будет отвергнута, имеет место противоречащая гипотеза. По этой причине эти гипотезы необходимо различать. Нулевой (основной) называют выдвинутую гипотезу Н0. Конкурирующей (альтернативной) называют гипотезу Н1, противоречащую нулевой. Ошибки первого и второго рода. Уровень значимости Выдвинутая гипотеза может быть правильной или неправильной, поэтому возникает необходимость проверить ее. Поскольку проверку производят статистическими методами, ее называют статистической. В итоге статистической проверки гипотезы в двух случаях может быть принято неправильное решение, т.е. могут быть допущены ошибки двух родов.

Ошибка первого рода состоит в том, что будет отвергнута правильная гипотеза. Ошибка второго рода состоит в том» что будет принята неправильная гипотеза. Правильное решение может быть принято также в двух случаях: гипотеза принимается; причем и в действительности она правильная; гипотеза отвергается, причем и в действительности она неверна. Вероятность совершить ошибку первого рода принято обозначать q. Ее называют уровнем значимости. Наиболее часто уровень значимости принимают равным 0,05 или 0,01. Если, например, принят уровень значимости, равный 0,05, то это означает, что в пяти случаях из ста мы рискуем допустить ошибку первого рода (отвергнуть правильную гипотезу). Степень свободы параметра. Степень свободы у какого-либо параметра определяют числом опытов, по которым рассчитывают данный параметр, за вычетом количества констант, найденных по этим опытам независимо друг от друга. Критическая область.

Область принятия гипотезы. Для проверки нулевой гипотеза используют специально подобранную случайную величину, точное или приближенное распределение которой известно. Ее обозначают t если она распределена по закону Стюдента, X2 - по закону "хи квадрат", F- по закону Фишера, G - по закону Кохрэна. Обозначим эту величину К Статистическим критерием (или просто критерием) называется случайная величина К, служащая для проверки нулевой гипотезы. Для проверки гипотезы по данным выборок вычисляют частные значения входящих в критерий величин и таким образом получают частное (наблюдаемое) значение критерия. Наблюдаемым значением (Кнабл) называют значение критерия, вычисленное по выборкам. После выбора определенного критерия множество всех его возможных значений разбивают на два непересекающихся подмножества; одно из них содержит значения критерия, при которых нулевая гипотеза отвергается, а другое - при которых она принимается. Критической областью называют совокупность значений критерия, при которых нулевую гипотезу отвергают. Областью принятия гипотезы (областью допустимых значений) называют совокупность значений критерия, при которых гипотезу принимают. Основной принцип проверки статистических гипотез можно сформулировать так: если наблюдаемое значение критерия принадлежит критической области - гипотезу отвергают, если наблюдаемое значение критерия принадлежит области принятия гипотезы - гипотезу принимают.

Поскольку критерий К - одномерная случайная величина, все ее возможные значения принадлежат некоторому интервалу. Поэтому критическая область и область принятия гипотезы также являются интервалами, и, следовательно, существуют точки, которые их разделяют. Критическими точками Ккр называют точки, отделяющие критическую область от области принятия гипотезы. Различают, одностороннюю (правостороннюю или левостороннюю) и двустороннюю критические области. Правосторонней называют критическую область, определяемую неравенством К>Ккр , где Ккр- положительное число. Левосторонней называют критическую область, определяемую неравенством К<Ккр , где Ккр- отрицательное число. Односторонней называют правостороннюю или левостороннюю критическую областью. Двусторонней называют критическую область, определяемую неравенствами K<K1, K>K2, где К2>К1.

2.Критерий Стьюдента

T-критерий Стьюдента применяется, когда необходимо сделать статистический вывод, равно ли математическое ожидание M{Х} генеральной совокупности некоторому предполагаемому значению С или когда требуется построить доверительный интервал для M{Х}. Обнаружено, что случайная величина t (при независимых наблюдениях) распределена по закону Стьюдента, если Х распределена нормально:

где N- общее число наблюдений (объем выборки),

Х - среднее арифметическое случайной переменной Х;

S{Х), S{X}- среднеквадратическое отклонение соответственно единичных значений Х и среднего арифметического Х.

На рис.1.2 показаны кривые дифференциального закона распределения Ф(t) для различных степеней свободы f=N-1 , по которым вычисляют несмещенную оценку дисперсии S2{ Х } . При сравнительно небольших N кривая Ф(t) более пологая, чем нормальный закон распределения Ф(Х). При N----- кривая Ф(t) приближается к кривой нормированного нормального распределения. Из рис.1.2 видно, что t-распределение симметрично относительно t=0, поэтому в таблицах, где даны критические значения tкр = tq,f для принятого уровня значимости q и имеющегося числа степеней свободы f , задаются только положительные tкр . Если при расчете t по формуле (1.3) при подстановке в нее вместо М{X} предполагаемого значения С окажется, что t< tкр , то можно сделать вывод о том, что гипотеза М{X} = С не противоречит результатам наблюдения при принятой уровне значимости q.

В противном случае эта гипотеза отвергается с тем же уровнем значимости q. При этом остается возможность совершить ошибку первого рода, т.е. отвергнуть верную гипотезу с вероятностью q. Рассмотрим использование t-критерия Стьюдента для построения доверительного интервала для математического ожидания. При t=tкр разность [X - M{Х}] в (1.3) равна половине ширины доверительного интервала т.е.

M{X} , определяется следующими выражениями:

Поскольку математическое ожидание М{X} есть истинное, объективно существующее неслучайное значение, а границы интервала - случайные величины (за счет наличия в них случайных величин X и S{X}), то правильно будет говорить о том, что доверительный интервал (1.5), (1.6) с вероятностью Р = I - q накрывает М {X}.

3.Критерий Фишера

нормальный закон распределение

Критерий Фишера применяется при проверке гипотезы о равенстве дисперсий двух генеральных совокупностей, распределенных по нормальному закону. F-критерий Фишера называют дисперсионным отношением, так как он формируется как отношение двух сравниваемых несмещенных оценок дисперсий: причем в числителе ставится большая из двух дисперсий. Расчетное F сравнивают с, которое находят из таблиц, для степеней свободы где N1 - число элементов выборки, по который вычислена. N2 - число элементов выборки, по которым получена оценка дисперсии. Если F<Fкр, то принимается нулевая гипотеза о равенстве генеральных дисперсий при принятом уровне значимости q. На рис. 1.3 показаны кривые распределения. Зачернена область критических значений F . На практике задача сравнения дисперсий возникает, если требуется сравнить .точность приборов, инструментов или методов измерений. Предпочтительнее тот прибор, инструмент или метод, который обеспечивает наименьшее рассеяние результатов измерений, т.е. наименьшую дисперсию.

Кривые F-распределения Фишера

Рис.1.3

Если окажется, что нулевая гипотеза справедлива, т.е. генеральные дисперсии одинаковы, то различие несмещенных оценок дисперсий незначимо и объясняется случайными причинами, в частности случайным отбором объектов выборки. Например, если различие несмещенных оценок дисперсий результатов измерений, выполненных двумя приборами, оказалось незначимым, то приборы имеют одинаковую точность. Если нулевая гипотеза будет отвергнута, т.е. генеральные дисперсии неодинаковы, то различие несмещенных оценок дисперсий значимо и не может быть объяснено случайными причинами, а является следствием того, что сами генеральные дисперсии различны. Например, если различие результатов измерений, произведенных двумя приборами, оказалась значимым, то точность приборов различна.

4.Критерий Кохрэна

G -критерий Kохрэна применяется для оценки однородности несмещенных оценок дисперсий, вычисленных по одинаковому числу N наблюдений. При этом генеральные совокупности должны быть распределены нормально. Критерий формируется как отношение максимальной из сравниваемых оценок дисперсий к сумме всех K дисперсий;

Если G<Gкр=Gq,f1,f2 , то оценки дисперсий признаются однородными или, другими словами, различаются незначимо. В этом случае с уровнем значимости q ммнимается нулевая гипотеза, состоящая в том, что генеральные дисперсии рассматриваемых совокупностей равны между собой: Числа степеней свободы числителя f1 и знаменателя f2 определяются условиями.

Если требуется оценить генеральную дисперсию, то при условии однородности оценок дисперсий целесообразно принять в качестве ее оценки среднее арифметическое несмещенных оценок дисперсий

5.Критерий Пирсона

Нормальный закон распределения характеризуется плотностью вероятности вида где M{X}, соответственно математическое ожидание и дисперсия случайной величины. согласованности изучаемого распределения с нормальным. Для проверки гипотезы о соответствии, экспериментального закона распределения случайной величины нормальному применяют критерий Пирсона или, как его иначе называют, критерий X2 (хи-квадрат), так как принятие и отклонение гипотезы основаны на X2 -распределении.

Использование критерия Пирсона основано на сравнении эмпирических (наблюдаемых) и теоретических (вычисленных в предположении нормального распределения) частот. Обычно и различны. Возможно, что расхождение случайно (незначимо) и объясняется малым числом наблюдений, способом их группировки Или другими причинами. Возможно, что расхождение частот неслучайно (значимо) и объясняется тем, что теоретические частоты вычислены, исходя из неверной гипотезы о нормальном распределении генеральной совокупности. Критерий Пирсона отвечает на поставленный ранее вопрос. Однако, как и любой статистический критерий, он не доказывает справедливость гипотезы, а лишь устанавливает при принятом уровне значимости q ее согласие или несогласие с данными наблюдений. Пусть по выборке объема получено эмпирическое распределение. Допустим, в предположении нормального распределения генеральной совокупности, вычислены теоретические частоты. При уровне значимости q требуется проверить нулевую гипотезу: генеральная совокупность распределена нормально. В качестве критерия проверки нулевой гипотезы принимается случайная величина

где К- число интервалов (вариант).

Эта величина случайная, так как в различая опытах она принимает различные, заранее неизвестные значения. Чем меньше различаются эмпирические и теоретические частоты, тем меньше значение критерия (1.9) и, следовательно, он в известной мере характеризует близость эмпирического и теоретического распределений. Возведением в квадрат разностей частот устраняется возможность взаимного погашения положительных и отрицательных разностей. При неограниченном возрастании объема выборки закон распределения случайной величины (1.9), независимо от того, какому закону распределения подчинена генеральная совокупность, стремится к закону распределения X2 с f степенями свободы. Поэтому случайная величина (1.9) обозначена X2, а сам критерий называют критерием согласия "хи квадрат". Число степеней свободы находят по равенству f=K-1-l где l- число параметров предполагаемого распределения, которые оценены по данным выборки, а l вызвана тем, что имеется дополнительное ограничение:

т.е.- Теоретическое число элементов совокупности должно быть равно фактическому числу элементов. Поскольку в данном случае, предполагаемое распределение является нормальным, nо оценивают два параметра (математическое ожидание и среднеквадратическое отклонение), поэтому l=2 , и число степеней свободы

Если расчетное (наблюдаемое) значение критерия (1.9).оказалось меньше критического которое находят по таблицам, для соответствующего уровня значимости q и числа степеней свободы , т.е. если

то нет оснований отвергнуть нулевую гипотезу о нормальности распределения. В противном случае нулевая гипотеза отвергается. При проверке гипотезы о нормальности распределения существует правило, согласно которому общее количество элементов выборки должно быть

а число элементов, попавших в любой i-и интервал (т.е. значения эмпирических частот, должно быть. Если в крайние интервалы попадает меньшее число элементов, то они объединяются с соседними интервалами. Внутренние интервалы объединять запрещается. Общее число интервалов К , оставшихся после объединения, должно удовлетворять условию. Иначе число степеней, свободы f (1.11) окажется равным нулю, и гипотезу невозможно будет проверить. В целях контроля вычислений формулу (1.9) целесообразно преобразовать к виду

В табл.1.4 приведен пример расчета наблюдаемого значения критерия по известным эмпирическим и теоретическим частотам. Если, то нет оснований отвергнуть нулевую гипотезу. Т.е., расхождение эмпирических и теоретических частот незначимо. Следовательно, данные наблюдений согласуются с гипотезой о нормальном распределении генеральной совокупности.

6.Характеристика пакета EXCELL

Microsoft Office является единственным пакетом, установленным на большинстве компьютеров. Excel -- это организатор любого типа данных, будь они числовыми, текстовыми или какими-нибудь еще. Поскольку в этой программе есть много встроенных вычислительных возможностей, большинство людей обращаются к Excel, когда нужно создать таблицы для финансовых расчетов, работать со статистическими данными. С помощью программы можно сделать свои отчеты (например, созданные в Word) более профессиональными и "пробить" дополнительное финансирование с помощью потрясающих деловых презентаций (вроде тех, что создаются в Microsoft PowerPoint). Excel позволяет создавать диаграммы или таблицы для различных финансовых расчетов, хранить какие-либо списки или даже сводить данные из различных таблиц.

Excel -- это великий хранитель списков (хотя их принято называть в Excel базами данных) и создатель таблиц. Поэтому Excel как нельзя лучше подходит для отслеживания информации о продаваемых товарах, об обслуживаемых клиентах, о служащих, которых вы контролируете, и т.д. Каждая единица информации (например, имя, адрес, число продаж в месяц и др. информация) занимает свою собственную ячейку (клетку) в создаваемой рабочей таблице. В каждой рабочей таблице 256 столбцов (из которых в новой рабочей таблице на экране видны, как правило, только первые 10 или 11 (от А до J или К) и 65 536 строк (из которых обычно видны только первые 15-20). Если умножить 256 на 65 536, то получится, что в каждой рабочей таблице 16 777 216 пустых клеток. Каждая новая рабочая книга содержит три чистых листа рабочих таблиц. Вся помещаемая в электронную таблицу информация хранится в отдельных клетках рабочей таблицы. Но ввести информацию можно только в текущую клетку. С помощью адреса в строке формул и табличного курсора Excel указывает, какая из 16 миллионов клеток рабочей таблицы является текущей. В основе системы адресации клеток рабочей таблицы -- так называемой системы А1 -- лежит комбинация буквы (или букв) столбца и номера строки. Excel является таким замечательным инструментом для выполнения расчетов по формулам, а также для хранения информации в виде списков и таблиц. Это дает возможность намного упростить работу со статистическими данными, которые рассчитываются по сложным формулам. В программе заложены множество групп формул, в том числе и статистических, или пользователь может сам записать формулу.

7.Алгоритм решения задачи

Размещено на Allbest.ru

...

Подобные документы

  • История открытия нормального закона, его применение в науке и технике. Вероятность попадания случайной величины, подчиненной нормальному закону, на заданный участок. Нормальная функция распределения. Геометрическая интерпретация вероятного отклонения.

    контрольная работа [506,3 K], добавлен 21.04.2019

  • Проверка гипотезы о законе распределения. Определение значения вероятности по классам распределения случайных величин нефтеносных залежей. Расчет распределения эффективных мощностей месторождения, которое подчиняется нормальному закону распределения.

    презентация [187,0 K], добавлен 15.04.2019

  • Оценивание параметров закона распределения случайной величины. Точечная и интервальная оценки параметров распределения. Проверка статистической гипотезы о виде закона распределения, нахождение параметров системы. График оценки плотности вероятности.

    курсовая работа [570,4 K], добавлен 28.09.2014

  • Проверка выполнимости теоремы Бернулли на примере вероятности прохождения тока по цепи. Моделирование дискретной случайной величины, имеющей закон распределения Пуассона. Подтверждение гипотезы данного закона распределения с помощью критерия Колмогорова.

    курсовая работа [134,2 K], добавлен 31.05.2010

  • Условия неограниченного приближения закона распределения суммы n независимых величин к нормальному закону распределения. Сущность центральной предельной теоремы. Определение с помощью теоремы Муавра-Лапласа вероятности наступления события в серии опытов.

    презентация [91,7 K], добавлен 01.11.2013

  • Вероятность совместного выполнения двух неравенств в системе двух случайных величин. Свойства функции распределения. Определение плотности вероятности системы через производную от соответствующей функции распределения. Условия закона распределения.

    презентация [57,9 K], добавлен 01.11.2013

  • Изучение сути и выдвижение предположения о законе распределения вероятности экспериментальных данных. Понятие и оценка асимметрии. Принятие решения о виде закона распределения вероятности результата. Переход от случайного значения к неслучайной величине.

    курсовая работа [126,0 K], добавлен 27.04.2013

  • Задачи математической статистики. Распределение случайной величины на основе опытных данных. Эмпирическая функция распределения. Статистические оценки параметров распределения. Нормальный закон распределения случайной величины, проверка гипотезы.

    курсовая работа [57,0 K], добавлен 13.10.2009

  • Проведение проверки гипотезы о нормальности закона распределения вероятности результатов измерения случайной величины по критерию согласия Пирсона. Определение ошибок в массивах данных: расчет периферийных значений, проверка серии на равнорассеянность.

    контрольная работа [1,8 M], добавлен 28.11.2011

  • Теорема Бернулли на примере моделирования электросхемы. Моделирование случайной величины, имеющей закон распределения модуля случайной величины, распределенной по нормальному закону. Проверка критерием Х2: имеет ли данный массив закон распределения.

    курсовая работа [2,3 M], добавлен 31.05.2010

  • Методы определения достоверного значения измеряемой физической величины и его доверительных границ, используя результаты многократных наблюдений. Проверка соответствия экспериментального закона распределения нормальному закону. Расчет грубых погрешностей.

    контрольная работа [52,5 K], добавлен 14.12.2010

  • Обработка результатов информации по транспортным и технологическим машинам методом математической статистики. Определение интегральной функции нормального распределения, функции закона Вейбула. Определение величины сдвига к началу распределения параметра.

    контрольная работа [488,5 K], добавлен 05.03.2017

  • Интервальный вариационный ряд. Построение гистограммы плотности относительных частот. Выдвижение гипотезы о законе распределения генеральной совокупности Х. Функция плотности рассматриваемого закона распределения "Построение ее на гистограмме".

    курсовая работа [104,4 K], добавлен 20.03.2011

  • Исследование сходимости рядов. Степенной ряд интеграла дифференциального уравнения. Определение вероятности событий, закона распределения случайной величины, математического ожидания, эмпирической функции распределения, выборочного уравнения регрессии.

    контрольная работа [420,3 K], добавлен 04.10.2010

  • Определение математического ожидания и дисперсии параметров распределения Гаусса. Расчет функции распределения случайной величины Х, замена переменной. Значения функций Лапласа и Пуассона, их графики. Правило трех сигм, пример решения данной задачи.

    презентация [131,8 K], добавлен 01.11.2013

  • Система кривых Пирсона. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей. Примеры нахождения кривых распределения вероятностей и программное обеспечение.

    дипломная работа [230,5 K], добавлен 13.03.2003

  • Определение, доказательство свойств и построение графика функции распределения. Вероятность попадания непрерывной случайной величины в заданный интервал. Понятие о теореме Ляпунова. Плотность распределения "хи квадрат", Стьюдента, F Фишера—Снедекора.

    курсовая работа [994,4 K], добавлен 02.10.2011

  • Конечное или счетное множество как совокупность возможных значений дискретной случайной величины. Анализ закона распределения функции одного случайного аргумента. Характеристика условий, от которых зависит монотонное возрастание и убывание функции.

    презентация [443,3 K], добавлен 24.04.2019

  • Определение вероятности случайного события, с использованием формулы классической вероятности, схемы Бернулли. Составление закона распределения случайной величины. Гипотеза о виде закона распределения и ее проверка с помощью критерия хи-квадрата Пирсона.

    контрольная работа [114,3 K], добавлен 11.02.2014

  • Расчет параметров экспериментального распределения. Вычисление среднего арифметического значения и среднего квадратического отклонения. Определение вида закона распределения случайной величины. Оценка различий эмпирического и теоретического распределений.

    курсовая работа [147,0 K], добавлен 10.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.