Системы исчисления

Позиционная система счисления как система, у которой количественные значения символов, используемых для записи чисел, зависят от их положения в коде числа. История возникновения идеи приписывать цифрам разные величины. Вавилонская и десятичная системы.

Рубрика Математика
Вид доклад
Язык русский
Дата добавления 08.12.2014
Размер файла 257,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Республики Казахстан

Школа-гимназия №5

Доклад

Системы счисления

Выполнила

ученица 6 класса,

Рустамова Д. Р.

1. Позиционные системы счисления

На этом уроке мы поговорим о позиционных системах счисления. Напомним, что позиционной системой счисления называется такая система счисления, у которой количественные значения символов, используемых для записи чисел, зависят от их положения (места, позиции) в коде числа.

Мы обсудим виды позиционных систем счисления и их связь между собой. позиционный вавилонский десятичный счисление

2. Вавилонская система счисления

Идея приписывать цифрам разные величины в зависимости от того, какую позицию они занимают в записи числа, впервые появилась в Древнем Вавилоне примерно в III тысячелетии до нашей эры.

До нашего времени дошли многие глиняные таблички Древнего Вавилона, на которых решены сложнейшие задачи, такие как вычисление корней, отыскание объема пирамиды и др. Для записи чисел вавилоняне использовали всего два знака: клин вертикальный (единицы) и клин горизонтальный (десятки). Все числа от 1 до 59 записывались с помощью этих знаков, как в обычной иероглифической системе (Рис. 1).

Рис. 1. (Источник)

Все число в целом записывалось в позиционной системе счисления с основанием 60.

Был у вавилонян и знак, игравший роль нуля. Им обозначали отсутствие промежуточных разрядов. Отголоски этой системы счисления мы находим в сохранившемся до наших дней обыкновении делить один час на 60 минут, одну минуту на 60 секунд, полный угол -- на 360 градусов (Рис. 2).

Рис. 2. (Источник)

3. Десятичная система счисления

Обычная система записи чисел, которой мы привыкли пользоваться в повседневной жизни, с которой мы знакомы с детства, в которой производим все наши вычисления - это пример позиционной системы счисления.

Рис. 3. (Источник)

В привычной нам системе счисления для записи чисел используются десять различных знаков (цифры 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9). Поэтому ее называют десятичной (Рис. 3). Из двух написанных рядом одинаковых цифр левая в 10 раз больше правой. Не только сама цифра, но и ее место, ее позиция в числе имеют определяющее значение. Поэтому данную систему счисления называют позиционной.

В десятичном числе 377 = 3 * 100 + 7 * 10 + 7 * 1 цифры 7, находящиеся на разных позициях, имеют различные количественные значения -- 7 десятков и 7 единиц. При перемещении цифры на соседнюю позицию ее «вес» изменяется в 10 раз.

Рис. 4. (Источник)

Потребовалось много тысячелетий, чтобы люди научились называть и записывать числа так, как это делаем мы с вами. Начало этому было положено в Древнем Египте и Вавилоне. Дело в основном завершили индийские математики в У-УП веках нашей эры. Важным достижением индийской науки было введение особого обозначения для пропуска разрядов -- нуля. Арабы, познакомившись с этой нумерацией первыми, по достоинству ее оценили, усвоили и перенесли в Европу. Получив название арабской, эта система в XII веке нашей эры распространилась по всей Европе и, будучи проще и удобнее остальных систем счисления, быстро их вытеснила. Сегодня десятичными цифрами выражаются время, номера домов и телефонов, цены, бюджет, на них базируется метрическая система мер.

Время многократно изменяло облик десятичных цифр, пока они не приобрели привычный для нас вид.

Арифметические действия над десятичными числами производятся с помощью достаточно простых операций, в основе которых лежат известные каждому школьнику таблицы умножения и сложения, а также правило переноса: если в результате сложения двух цифр получается число, которое больше или равно 10, то оно записывается с помощью нескольких цифр, находящихся на соседних позициях.

Перевод из одной системы счисления в другую

Основанием системы счисления может быть любое целое число, большее 1.

Однако наибольшее распространение получили системы счисления, основания которых являются степенями 2 (двоичная, четверичная, восьмеричная, шестнадцатеричная), а также троичная.

Может возникнуть вопрос: как может существовать шестнадцатеричная система счисления, если цифр всего 10? Ответ на этот вопрос очень прост: числа 10, 11, 12, 13, 14 и 15 записывают в виде букв A, B, C, D, E, F.

Вообще, как несложно заметить, для записи чисел в любой системе нужно столько же цифр, какое основание у этой системы. Например, в двоичной системе мы используем две цифры 0 и 1, в троичной используются три цифры 0, 1 и 2. В привычной нам десятичной системе счисления используется 10 цифр: от 0 до 9.

Как же переводить числа из одной системы счисления в другую?

Алгоритм достаточно прост. Необходимо делить с остатком число в первой системе счисления на основание второй системы счисления. Полученные остатки, записанные в обратном порядке, и образуют новое число.

Если перевод чисел из одного системы в другую напрямую затруднителен, то можно перевести сначала в десятичную систему счисления, а из десятичной в нужную.

Давайте рассмотрим пример, который разобран двумя способами.

Задача. Перевести число в троичную систему счисления.

Способ 1. Переведём число сначала в десятичную систему счисления по уже известному алгоритму:

Теперь переведём число 15 из десятичной системы в троичную также по известному алгоритму:

15 делим на 3:

15

5

1

0

2

1

Записываем полученные остатки в обратном порядке: .

Получаем: .

Способ 2. Переведём число напрямую в троичную систему.

Для этого поделим его на число 3, только тоже в двоичной системе: .

Получаем:

1111

101

1

0

10

1

Теперь переведём полученные остатки в десятичную систему: 0=0, 10=2, 1=1. Получаем: . То есть, тот же ответ, что и в первом способе.

Размещено на Allbest.ru

...

Подобные документы

  • История развития систем счисления. Непозиционная, позиционная и десятичная система счисления. Использование систем счисления в компьютерной технике и информационных технологиях. Двоичное кодирование информации в компьютере. Построение двоичных кодов.

    курсовая работа [5,3 M], добавлен 21.06.2010

  • Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника и наука вообще. История цифр. Числа и счисление. Способы запоминания чисел.

    реферат [42,5 K], добавлен 13.04.2008

  • Понятие системы счисления. История развития систем счисления. Понятие натурального числа, порядковые отношения. Особенности десятичной системы счисления. Общие вопросы изучения нумерации целых неотрицательных чисел в начальном курсе математики.

    курсовая работа [46,8 K], добавлен 29.04.2017

  • Ознакомление с записью чисел в алфавитной системе счисления. Особенности установления числовых значений букв у славянских народов. Рассмотрение записи больших чисел в славянской системе счисления. Обозначение "тем", "легионов", "леордов" и "колод".

    презентация [1,0 M], добавлен 30.09.2012

  • Система счисления, применяемая в современной математике, используемые в ЭВМ. Запись чисел с помощью римских цифр. Перевод десятичных чисел в другие системы счисления. Перевод дробных и смешанных двоичных чисел. Арифметика в позиционных системах счисления.

    реферат [75,2 K], добавлен 09.07.2009

  • Математическая теория чисел. Понятие систем счисления. Применения двоичной системы счисления. Компьютерная техника и информационные технологии. Алфавитное неравномерное двоичное кодирование. Достоинства и недостатки двоичной системы счисления.

    реферат [459,5 K], добавлен 25.12.2014

  • Вавилонская система счисления, таблицы обратных чисел и математика для исследования движений планет. Египетский календарь и введение символа для обозначения нуля у майя. Греческая математика, Индия и арабы. Современная математика и математический анализ.

    реферат [49,7 K], добавлен 27.04.2009

  • Совокупность приемов и правил записи и чтения чисел. Определение понятий: система счисления, цифра, число, разряд. Классификация и определение основания систем счисления. Разница между числом и цифрой, позиционной и непозиционной системами счисления.

    презентация [1,1 M], добавлен 15.04.2015

  • Определения системы счисления, числа, цифры, алфавита. Типы систем счисления. Плюсы и минусы двоичных кодов. Перевод шестнадцатеричной системы в восьмеричную и разбитие ее на тетрады и триады. Решение задачи Баше методом троичной уравновешенной системы.

    презентация [713,4 K], добавлен 20.06.2011

  • Понятие и математическое содержание систем счисления, их разновидности и сферы применения. Отличительные признаки и особенности позиционных и непозиционных, двоичных и десятичных систем счисления. Порядок перевода чисел из одной системы в другую.

    презентация [419,8 K], добавлен 10.11.2010

  • Исследование истории систем счисления. Описание единичной и двоичной систем счисления, древнегреческой, славянской, римской и вавилонской поместной нумерации. Анализ двоичного кодирования в компьютере. Перевод чисел из одной системы счисления в другую.

    контрольная работа [892,8 K], добавлен 04.11.2013

  • Свойства чисел натурального ряда. Периодическая зависимость от порядковых номеров чисел. Шестеричная периодизация чисел. Область отрицательных чисел. Расположение простых чисел в соответствии с шестеричной периодизацией.

    научная работа [20,2 K], добавлен 29.12.2006

  • Сущность двоичной, восьмеричной и шестнадцатиричной систем счисления, их отличительные черты и взаимосвязь. Пример алгоритмов перевода чисел из одной системы в другую. Составление таблицы истинности и логической схемы для заданных логических функций.

    презентация [128,9 K], добавлен 12.01.2014

  • Как люди научились считать, возникновение цифр, чисел и систем счисления. Таблица умножения на "пальцах": методика умножения для чисел 9 и 8. Примеры быстрого счета. Способы умножения двузначного числа на 11, 111, 1111 и т.д. и трехзначного числа на 999.

    курсовая работа [66,8 K], добавлен 22.10.2011

  • Система, свойства и модели комплексных чисел. Категоричность и непротиворечивость аксиоматической теории комплексных чисел. Корень четной степени из отрицательного числа. Матрицы второго порядка, действительные числа. Операции сложения и умножения матриц.

    курсовая работа [1,1 M], добавлен 15.06.2011

  • Вычисление комплексных чисел, модуля и аргумента, извлечение кубических корней. Нахождение синусов и косинусов в алгебраическом виде. Решение системы уравнений с помощью формул Крамера, вспомогательных определителей и средствами матричного исчисления.

    контрольная работа [444,2 K], добавлен 11.05.2013

  • Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.

    курсовая работа [104,1 K], добавлен 03.01.2008

  • История возникновения и развития арабских цифр, особенности их написания, удобство по сравнению с другими системами. Знакомство с цифрами разных народов: системой счисления Древнего Рима, китайскими, деванагари и их развитием от древности, до наших дней.

    реферат [276,4 K], добавлен 22.01.2011

  • Закон сохранения количества чисел Джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Структура натурального ряда чисел. Изоморфные свойства рядов четных и нечетных чисел. Фрактальная природа распределения простых чисел.

    монография [575,3 K], добавлен 28.03.2012

  • История отрицательных чисел: их отрицание в Древнем Египте, Вавилоне, Греции, узаконивание в Китае и Индии. Математические действия с ними. Подходы к определению положению нуля как натурального числа. Изучение отрицательных чисел в школьной программе.

    презентация [178,6 K], добавлен 13.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.