Численное дифференцирование

Получение формулы численного дифференцирования при помощи первого интерполяционного многочлена Ньютона. Построение формул численного дифференцирования и аппроксимации функции. Построение интерполяционного многочлена первой степени. Теорема Больцано-Коши.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 22.12.2014
Размер файла 120,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Жетысуский Государственный Университет им. И. Жансугурова

Контрольная работа

ЧИСЛЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ

Введение

В основе численного дифференцирования лежит аппроксимация функции, от которой берется производная, интерполяционным многочленом. Все основные формулы численного дифференцирования могут быть получены при помощи первого интерполяционного многочлена Ньютона (формулы Ньютона для начала таблицы).

Основными задачами являются вычисление производной на краях таблицы и в ее середине. Для равномерной сетки формулы численного дифференцирования «в начале таблицы» можно представить в общем виде следующим образом:

Где -- погрешность формулы. Здесь коэффициенты и зависят от степени n использовавшегося интерполяционного многочлена, то есть от необходимой точности (скорости сходимости к точному значению при уменьшении шага сетки) формулы. Коэффициенты представлены в таблице

Таблица 1.

1. Формулы численного дифференцирования

Один из универсальных способов построения формул численного дифференцирования состоит в том, что по значениям функции в некоторых узлах строят интерполяционный полином (в форме Лагранжа или в форме Ньютона) и приближенно полагают

В ряде случаев, наряду у с приближенным равенством удается (например, используя формулу Тейлора) получить точное равенство, содержащее остаточный член (погрешность численного дифференцирования)

Такие формулы называются формулами численного дифференцирования с остаточными членами.

Степень, с которой входит величина в остаточный член, называется порядком погрешности формулы численного дифференцирования. Формулы с отброшенными остаточными членами называются просто формулами численного дифференцирования.

Ниже приводятся несколько распространенных формул численного дифференцирования с остаточными членами для первой и второй производных в узлах, расположенных с постоянным шагом :

(два узла):

(три узла):

(три узла):

(четыре узла):

Где -- шаг сетки, а точка - некоторая промежуточная точка.

В формулах численного дифференцирования с постоянным шагом значения функции делятся на , где - порядок вычисляемой производной. Поэтому при маломнеустранимые погрешности в значениях функции оказывают сильное влияние на результат численного дифференцирования. Таким образом, возникает задача выбора оптимального шага , так как погрешность собственно метода стремится к нулю при , а неустранимая погрешность растет. В результате общая погрешность, которая возникает при численном дифферецировании, может неограниченно возрастать при . Поэтому операцию численного дифференцирования считают некорректной.

Пусть имеется функция которую необходимо продифференцировать несколько раз и найти эту производную в некоторой точке.

Если задан явный вид функции, то выражение для производной часто оказывается достаточно сложным и желательно его заменить более простым. Если же функция задана только в некоторых точках (таблично), то получить явный вид ее производных в обще невозможно. В этих ситуациях возникает необходимость приближенного (численного) дифференцирования.

Простейшая идея численного дифференцирования состоит в том, что функция заменяется интерполяционным многочленом (Лагранжа, Ньютона) и производная функции приближенного заменяется соответствующей производной интерполяционного многочлена

Рассмотрим простейшие формулы численного дифференцирования, которые получаются указанным способом.

Будем предполагать, что функция задана в равностоящих узлах

Ее значения и значения производных в узлах будем обозначать

Пусть функция задана в двух точках и ее значения

Построим интерполяционный многочлен первой степени

Производная равна

Производную функцию в точке приближенно заменяем производной интерполяционного многочлена

(1)

Величина называется первой разностной производной.

Пусть задана в трех точках

Интерполяционный многочлен Ньютона второй степени имеет вид

В точке она равна

Получаем приближенную формулу

(2)

Величина называется центральной разностной производной.

Наконец, если взять вторую производную

(3)

Величина называется второй разностной производной.

Формулы (1)-(3) называются формулами численного дифференцирования.

Предполагая функцию достаточное число раз непрерывно дифференцируемой, получим погрешности приближенных формул (1)-(3).

В дальнейшем нам понадобится следующая лемма.

Лемма 1. Пусть произвольные точки, Тогда существует такая точка что

Доказательство. Очевидно неравенство

По теореме Больцано-Коши о промежуточных значениях непрерывной функции на замкнутом отрезке она принимает все значения между и Значит существует такая точка что выполняет указанное в лемме равенство.

Погрешности формул численного дифференцирования дает следующая лемма.

Лемма 2.

1. Предположим, что Тогда существует такая точка , что

(4)

Если то существует такая точка , что

(5)

Когда то существует такая, что

(6)

Доказательство. По формуле Тейлора

откуда следует (4).

Если то по формуле Тейлора

(7)

где

Подставим (7) в Получаем

Откуда и следует (6).

Равенство (5) доказывается аналогично (доказательство провести самостоятельно).

Формулы (4)-(6) называются формулами численного дифференцирования с остаточными членами.

Погрешности формул (1)-(3) оцениваются с помощью следующих неравенств, которые вытекают из соотношений (4)-(6):

Говорят, что погрешность формулы (1) имеет первый порядок относительно (или порядка ), а погрешность формул (2) и (3) имеет второй порядок относительно (или порядка ). Также говорят, что формула численного дифференцирования (1) первого порядка точности (относительно ), а формулы (2) и (3) имеют второй порядок точности.

Указанным способом можно получать формулы численного дифференцирования для более старших производных и для большего количества узлов интерполирования.

Выбор оптимального шага. Допустим, что граница абсолютной погрешности при вычислении функции в каждой точке удовлетворяет неравенству

(8)

Пусть в некоторой окрестности точки производные, через которые выражаются остаточные члены в формулах (5), (6), непрерывны и удовлетворяют неравенствам:

(9)

где - некоторые числа. Тогда полная погрешность формул (2), (3) (без учета погрешностей округления) в соответствии с (5), (6), (8), (9)не превосходит соответственно величин

Минимизация по этих величин приводит к следующим значениям :

(12)

(13)

численный дифференцирование аппроксимация интерполяционный

Если при выбранном для какой-либо из формул (2), (3) значении отрезок не выходит за пределы окрестности точки , в которой выполняется соответствующее неравенство (9), то найденное есть оптимальным и полная погрешность численного дифференцирования оценивается соответствующей величиной (13).

Размещено на Allbest.ru

...

Подобные документы

  • Методы численного дифференцирования. Вычисление производной, простейшими формулами. Численное дифференцирование, основанное на интерполяции алгебраическими многочленами. Аппроксимация многочленом Лагранжа. Дифференцирование, с использованием интерполяции.

    курсовая работа [1,3 M], добавлен 15.02.2016

  • Вычисление производной по ее определению, с помощью конечных разностей и на основе первой интерполяционной формулы Ньютона. Интерполяционные многочлены Лагранжа и их применение в численном дифференцировании. Метод Рунге-Кутта (четвертого порядка).

    реферат [71,6 K], добавлен 06.03.2011

  • Решение системы линейных уравнений методом Якоби вручную и на Бейсике. Построение интерполяционного многочлена Ньютона с помощью Excel. Получение аппроксимирующей функции методом наименьших квадратов. Построение кубического сплайна по шести точкам.

    курсовая работа [304,9 K], добавлен 07.09.2012

  • Особенности решения линейных и нелинейных уравнений. Характеристика и практическое применение и различных методов при решении уравнений. Сущность многочлена Лагранжа и обратного интерполирования. Сравнение численного дифференцирования и интегрирования.

    курсовая работа [799,6 K], добавлен 20.01.2010

  • Понятие интерполяционного многочлена Лагранжа как многочлена минимальной степени, порядок его построения. Решение и оценка остаточного члена. Нахождение приближающей функции в виде линейной функции, квадратного трехчлена и других элементарных функций.

    курсовая работа [141,5 K], добавлен 23.07.2011

  • Доказательство существования и единственности интерполяционного многочлена Лагранжа. Понятие лагранжевых коэффициентов. Способы задания наклонов интерполяционного кубического сплайна, его использование для аппроксимации функций на больших промежутках.

    презентация [251,7 K], добавлен 29.10.2013

  • Основные правила расчета значений дифференциального уравнения. Изучение выполнения оценки погрешности вычислений, осуществления аппроксимации решений. Разработка алгоритма и написание соответствующей программы. Построение интерполяционного многочлена.

    курсовая работа [212,6 K], добавлен 11.12.2013

  • Метод решения задачи, при котором коэффициенты a[i], определяются непосредственным решением системы - метод неопределенных коэффициентов. Интерполяционная формула Ньютона и ее варианты. Построение интерполяционного многочлена Лагранжа по заданной функции.

    лабораторная работа [147,4 K], добавлен 16.11.2015

  • Построение приближающей функции, используя исходные данные, с помощью методов Лагранжа, Ньютона и Эйткена (простая и упрощенная форма реализации). Алгоритм вычисления интерполяционного многочлена. Сравнение результатов реализации методов в среде Mathcad.

    курсовая работа [299,3 K], добавлен 30.04.2011

  • Суть модифицированного метода Эйлера. Определение интерполяционного многочлена. Выведение формулы трапеций из геометрических соображений. Применение для расчетов интерполированного полинома Ньютона. Составление блок-схемы алгоритма решения уравнений.

    курсовая работа [252,7 K], добавлен 14.02.2016

  • Теория приближений как раздел математики, изучающий вопрос о возможности приближенного представления математических объектов. Построение интерполяционного многочлена. Приближение кусочно-полиномиальными функциями. Алгоритм программы и ее реализация.

    курсовая работа [390,2 K], добавлен 18.10.2015

  • Определение погрешности вычислений при численном дифференцировании. Алгебраический порядок точности численного метода как наибольшей степени полинома. Основной и вспомогательный бланк для решения задачи Коши. Применение интерполяционной формулы Лагранжа.

    реферат [1,4 M], добавлен 10.06.2012

  • Пределы функций и их основные свойства, операция предельного перехода, бесконечно малые функции. Производная функции, важнейшие правила дифференцирования, правило Лопиталя. Применение дифференциала функции в приближенных вычислениях, построение графиков.

    методичка [335,2 K], добавлен 18.05.2010

  • Построение массива конечных разностей. Выполнение экстраполяции. Вычисление приближенной функции с помощью многочлена Лагранжа. Определение значения функции с помощью формул Ньютона. Квадратичная сплайн-интерполяция. Среднеквадратичная аппроксимация.

    контрольная работа [1004,9 K], добавлен 01.12.2009

  • Разработка программного обеспечения для решения нелинейных систем алгебраических уравнений методом дифференцирования по параметру и исследование влияние метода интегрирования на точность получаемого решения. Построение графиков переходных процессов.

    курсовая работа [619,3 K], добавлен 26.04.2011

  • Методы хорд и итераций, правило Ньютона. Интерполяционные формулы Лагранжа, Ньютона и Эрмита. Точечное квадратичное аппроксимирование функции. Численное дифференцирование и интегрирование. Численное решение обыкновенных дифференциальных уравнений.

    курс лекций [871,5 K], добавлен 11.02.2012

  • Производная - основное понятие дифференциального исчисления, характеризующее скорость изменения функции. Исследование правил дифференцирования, которые используют при нахождении производных. Определение производной алгебраической суммы конечного числа.

    презентация [175,0 K], добавлен 21.09.2013

  • Многочлен как сумма или разность одночленов. Запись многочлена в стандартном виде. Операции при сложении и вычитании многочленов. Умножение многочлена на одночлен. Деление многочлена на одночлен. Разложение многочлена на множители, метод группировки.

    презентация [53,2 K], добавлен 26.02.2010

  • Введение в численные методы, план построения вычислительного эксперимента. Точность вычислений, классификация погрешностей. Обзор методов численного интегрирования и дифференцирования, оценка апостериорной погрешности. Решение систем линейных уравнений.

    методичка [7,0 M], добавлен 23.09.2010

  • Вид определенного интеграла от непрерывной на заданном отрезке функции. Сущность квадратурных формул. Нахождение численного значения интеграла с помощью методов левых и правых прямоугольников, трапеций, парабол. Выведение общей формулы Симпсона.

    презентация [120,3 K], добавлен 18.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.