Цилиндрические и канонические винтовые линии

Образование винтовой линии. Пять различных положений плоскости, которая содержит движущуюся точку. Скольжение одной винтовой поверхности по другой. Развертка поверхности цилиндра с нанесённой винтовой линией. Построение синусоиды и деление окружности.

Рубрика Математика
Предмет Математика
Вид реферат
Язык русский
Прислал(а) lyucscn73
Дата добавления 16.12.2014
Размер файла 394,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Образование винтовой поверхности (геликоида) винтовым перемещением линии (образующей). Прямые и наклонные, закрытые и открытые геликоиды. Построение разверток поверхности, их свойства и сферы применения. Схемы развертки тел вращения: конус и цилиндр.

    презентация [338,1 K], добавлен 16.01.2012

  • Определение алгебраической линии на плоскости. Теорема о независимости порядка линии от выбора аффиной системы координат. Классификация алгебраической линии. Понятие алгебраической линии на плоскости и окружности как составляющих метода координат.

    курсовая работа [197,3 K], добавлен 29.09.2014

  • Классификация различных точек поверхности. Омбилические точки поверхности. Строение поверхности вблизи эллиптической, параболической и гиперболической точек. Линии кривизны поверхности и омбилические точки. Поверхность, состоящая из омбилических точек.

    дипломная работа [956,7 K], добавлен 24.06.2015

  • Построение разверток поверхностей. Параллелепипед и его развертка. Чертеж развертки поверхности правильной пирамиды, прямого кругового конуса, прямого кругового цилиндра, правильной призмы, прямого эллиптического цилиндра. Способ нормального сечения.

    контрольная работа [1,8 M], добавлен 11.11.2014

  • Метод координат. Основные задачи аналитической геометрии на прямой и на плоскости. Основные линии второго порядка. Алгебраическая и геометрическая интерпретация векторов. Уравнение поверхности и уравнение линии в пространстве. Общее уравнение плоскости.

    учебное пособие [687,5 K], добавлен 04.05.2011

  • Ортогональное проецирование точки в разные плоскости. Проецирование прямой линии по плоскостям проекций. Плоскость на эпюре Монжа, позиционные и метрические задачи. Многогранники, кривые линии и аксонометрические поверхности, касательные и сечение.

    учебное пособие [3,6 M], добавлен 07.01.2012

  • Кривая и формы поверхности второго порядка. Анализ свойств кривых и поверхностей второго порядка. Исследование форм поверхности методом сечений плоскостями, построение линии, полученной в сечениях. Построение поверхности в канонической системе координат.

    курсовая работа [132,8 K], добавлен 28.06.2009

  • Представление о взаимном расположении поверхностей в пространстве. Линейчатые и нелинейчатые поверхности вращения. Пересечение кривых поверхностей. Общие сведения о поверхностях. Общий способ построения линии пересечения одной поверхности другою.

    реферат [5,4 M], добавлен 10.01.2009

  • Сетка Вульфа (стереографическая сетка) - проекция меридианов и параллелей сферической поверхности на плоскость основного меридиана. Нахождение длины дуги окружности и радиуса. Построение линий параллелей. Чертеж линии меридиана с заданной долготой.

    контрольная работа [591,2 K], добавлен 13.05.2009

  • Теорема о проецировании прямого угла, возможные три случая такого проецирования. Главные линии плоскости: линии уровня и линии наибольшего наклона. Прямая, перпендикулярная к плоскости и ее проекции. Условие взаимной перпендикулярности двух плоскостей.

    реферат [463,3 K], добавлен 17.10.2010

  • Нахождение координат треугольника по заданным вершинам. Условия перпендикулярности, параллельности и совпадения прямых. Уравнение плоскости, проходящей через точку. Составление канонических уравнений прямой, кривой второго порядка и поверхности.

    контрольная работа [259,7 K], добавлен 28.03.2014

  • Линейная алгебра. Комплексные числа. Деление отрезка в данном отношении. Площадь треугольника и многоугольника. Сферические и цилиндрические поверхности. Замечательные и вычислительные пределы. Производства и дифференциал. Построение графика функций.

    методичка [2,4 M], добавлен 19.06.2015

  • Плоскость как простейший вид поверхности, ее задание тремя точками. Основные геометрические фигуры на плоскости. Определение геометрического места точек, примеры для угла и окружности. Сущность использования метода геометрических мест при решении задач.

    курсовая работа [115,2 K], добавлен 10.01.2010

  • Основные признаки поверхности. Эллипсоид: понятие; плоскости симметрии. Сфера как замкнутая поверхность. Параметрические уравнения тора и катеноида. Общее понятие про геликоид. Параболоид как поверхность вращения. Параметрические уравнения цилиндра.

    реферат [950,6 K], добавлен 21.11.2010

  • Замкнутые пространственные фигуры, ограниченные плоскими многоугольниками. Линейчатые поверхности вращения. Точка на поверхности тора и сферы. Понятие меридиональной плоскости. Преобразование комплексного чертежа. Метод замены плоскостей проекций.

    презентация [69,8 K], добавлен 27.10.2013

  • Стереометрия - это раздел геометрии, в котором изучаются фигуры в пространстве. Определение цилиндра. Элементы и свойства цилиндра. Площадь цилиндра. Площадь полной поверхности цилиндра. Объем цилиндра. В практической части - примеры решения задач.

    методичка [8,6 M], добавлен 10.06.2008

  • Уравнения линии на плоскости, их формы. Угол между прямыми, условия их параллельности и перпендикулярности. Расстояние от точки до прямой. Кривые второго порядка: окружность, эллипс, гипербола, парабола, их уравнения и главные геометрические свойства.

    лекция [160,8 K], добавлен 17.12.2010

  • Поверхности и ориентация. Теория внутренней поверхности. Выбор ориентации поверхности при помощи выбора базиса касательных векторов. Выбор вектора единичной нормали. Внутренняя геометрия поверхности, определение развертки и теорема Александрова.

    реферат [144,0 K], добавлен 07.12.2012

  • Аналитическая геометрия. Декартова система координат, линии на плоскости и кривые второго порядка. Поверхности в трехмерном пространстве. Система n линейных уравнений с n неизвестными. Элементы математического анализа. Основные правила комбинаторики.

    отчет по практике [1,1 M], добавлен 15.11.2014

  • Решение системы линейных алгебраических уравнений по формулам Крамера. Составление уравнение линии, каждая точка которой является центром окружности, касающейся оси абсцисс и проходящей через точку. Нахождение размерности и базиса пространства.

    контрольная работа [665,5 K], добавлен 28.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.