Ряды Фурье

Французский математик Фурье и его основные труды. Понятие и основные сведения о ряде Фурье. Достаточные признаки разложимости функции в ряд Фурье. Ряды Фурье для четных и нечетных функций. Ортогональная система функций, задача о колебании струны.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 12.12.2014
Размер файла 102,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

МОСКОВСКИЙ ВОЕННЫЙ УНИВЕРСИТЕТ

Кафедра “Информатики и управления”

Ряды Фурье

Выполнил курсант

Смирнов Иван Олегович

Руководитель

Преподаватель Назаренко Г.В.

Москва-2011

Оглавление

Введение

1. Основные сведения

2. Тригонометрический ряд. Ряд Фурье

3. Достаточные признаки разложимости функции в ряд Фурье

4. Ряды Фурье для четных и нечетных функций

5. Ряд Фурье по любой ортогональной системе функций

6. Задача о колебании струны

Список рекомендуемой литературы

Введение

Жан Батист Жозеф Фурье - французский математик, член Парижской Академии Наук (1817).

Первые труды Фурье относятся к алгебре. Уже в лекциях 1796 он изложил теорему о числе действительных корней алгебраического уравнения, лежащих между данными границами (опубл. 1820), названную его именем; полное решение о числе действительных корней алгебраического уравнения было получено в 1829 Ж.Ш.Ф. Штурмом. В 1818 Фурье исследовал вопрос об условиях применимости разработанного Ньютоном метода численного решения уравнений, не зная об аналогичных результатах, полученных в 1768 французским математиком Ж.Р. Мурайлем. Итогом работ Фурье по численным методам решения уравнений является «Анализ определённых уравнений», изданный посмертно в 1831.

Основной областью занятий Фурье была математическая физика. В 1807 и 1811 он представил Парижской Академии Наук свои первые открытия по теории распространении тепла в твёрдом теле, а в 1822 опубликовал известную работу «Аналитическая теория теплоты», сыгравшую большую роль в последующей истории математики. Это - математическая теория теплопроводности. В силу общности метода эта книга стала источником всех современных методов математической физики. В этой работе Фурье вывел дифференциальное уравнение теплопроводности и развил идеи, в самых общих чертах намеченные ранее Д. Бернулли, разработал для решения уравнения теплопроводности при тех или иных заданных граничных условиях метод разделения переменных (метод Фурье), который он применял к ряду частных случаев (куб, цилиндр и др.). В основе этого метода лежит представление функций тригонометрическими рядами Фурье.

Ряды Фурье теперь стали хорошо разработанным средством в теории уравнений в частных производных при решении граничных задач.

В более общем виде рядом Фурье элемента гильбертова пространства называется разложение этого элемента по ортогональному базису. Существует множество систем ортогональных функций: Уолша, Лагера, Котельникова… фурье ряд функция ортогональный

Разложение функции в ряд Фурье является мощным инструментом при решении самых разных задач благодаря тому, что ряд Фурье прозрачным образом ведёт себя при дифференцировании, интегрировании, сдвиге функции по аргументу и свёртке функций.

1. Основные сведения

Ряд Фурье -- представление произвольной функции f с периодом ф в виде ряда

Этот ряд может быть также переписан в виде

.

Функция f(x), определенная на всей числовой оси называется периодической, если существует такое число , что при любом значении х выполняется равенство . Число Т называется периодом функции.

Отметим некоторые с в о й с т в а этой функции:

1) Сумма, разность, произведение и частное периодических функций периода Т есть периодическая функция периода Т.

2) Если функция f(x) период Т , то функция f(ax) имеет период .

3) Если f(x) - периодическая функция периода Т , то равны любые два интеграла от этой функции, взятые по промежуткам длины Т (при этом интеграл существует), т. е. при любых a и b справедливо равенство

.

Иными словами, преобразование Фурье периодической функции представляет собой сумму точечных нагрузок в целых точках, и равно нулю вне их.

2. Тригонометрический ряд. Ряд Фурье

Если f(x) разлагается на отрезке в равномерно сходящийся тригонометрический ряд:

(1)

то это разложение единственное и коэффициенты определяются по формулам:

, где n=1,2, . . .

Тригонометрический ряд (1) рассмотренного вида с коэффициентами называется тригонометрическим рядом Фурье, а коэффициентами ряда Фурье.

3. Достаточные признаки разложимости функции в ряд Фурье

Точка разрыва функции называют точкой разрыва первого рода, если существует конечные пределы справа и слева этой функции в данной точке.

Теорема 1 (Дирихле).

Если периодическая с периодом функция непрерывна или имеет конечное число точек разрыва 1-ого рода на отрезке [] и этот отрезок можно разбить на конечное число частей, в каждом из которых f(x) монотонна, то ряд Фурье относительно функции сходится к f(x) в точках непрерывности и к среднеарифметическому односторонних пределов в точках разрыва рода (Функция удовлетворяющая этим условиям называется кусочно-монотонной).

Теорема 2.

Если f(x) периодическая функция с периодом , которая на отрезке [] вместе со своей производной непрерывна или имеет конечное число точек разрыва первого рода, то ряд Фурье функции f(x) в точках разрыва к среднему арифметическому односторонних пределов (Функция удовлетворяющая этой теореме называется кусочно-гладкой).

4. Ряды Фурье для четных и нечетных функций

Пусть f(x) - четная функция с периодом 2L , удовлетворяющая условию

f(-x) = f(x) .

Тогда для коэффициентов ее ряда Фурье находим формулы:

=

=

= 0 , где n=1,2, . . .

Таким образом, в ряде Фурье для четной функции отсутствуют члены с синусами, и ряд Фурье для четной функции с периодом 2L выглядит так:

Пусть теперь f(x) - нечетная функция с периодом 2L, удовлетворяющая условию f(-x) = - f(x).

Тогда для коэффициентов ее ряда Фурье находим формулы:

, где n=1,2, . . .

Таким образом, в ряде Фурье для нечетной функции отсутствует свободный член и члены с косинусами, и ряд Фурье для нечетной функции с периодом 2L выглядит так:

Если функция f(x) разлагается в тригонометрический ряд Фурье на промежутке то

где ,

,

,

Если f(x) разлагается в тригонометрический ряд Фурье на [0,L], то доопределив заданную функцию f(x) соответствующим образом на [-L,0]; далее периодически продолжив на (T=2L), получим новую функцию, которую разлагаем в тригонометрический ряд Фурье.

Для разложения в ряд Фурье непериодической функции, заданной на конечном произвольном промежутке [a,b], надо : доопределить на [b,a+2L] и периодически продолжить, либо доопределить на [b-2L,a] и периодически продолжить.

5. Ряд Фурье по любой ортогональной системе функций

Последовательность функций непрерывных на отрезке [a,b], называется ортогональной системой функции на отрезке [a,b], если все функции последовательности попарно ортогональны на этом отрезке, т. е. если

Система называется ортогональной и нормированной (ортонормированной) на отрезке [a,b], если выполняется условие

Пусть теперь f(x) - любая функция непрерывная на отрезке [a,b]. Рядом Фурье такой функции f(x) на отрезке [a,b] по ортогональной системе называется ряд:

коэффициенты которого определяются равенством:

n=1,2,...

Если ортогональная система функций на отрезке [a,b] ортонормированная, то в этом случаи

где n=1,2,...

Пусть теперь f(x) - любая функция, непрерывная или имеющая конечное число точек разрыва первого рода на отрезке [a,b]. Рядом Фурье такой функции f(x) на томже отрезке по ортогональной системе называется ряд:

,

Если ряд Фурье функции f(x) по системе (1) сходится к функции f(x) в каждой ее точке непрерывности, принадлежащей отрезку [a,b]. В этом случае говорят что f(x) на отрезке [a,b] разлагается в ряд по ортогональной системе (1).

6. Задача о колебании струны

Пусть в состоянии равновесия натянута струна длинной l с концами x=0 и x=l. Предположим, что струна выведена из состояния равновесия и совершает свободные колебания. Будем рассматривать малые колебания струны, происходящие в вертикальной плоскости.

При сделанных выше допущениях можно показать, что функция u(x,t) , характеризующая положение струны в каждый момент времени t, удовлетворяет уравнению

(1) , где а - положительное число.

Наша з а д а ч а - найти функцию u(x,t) , график которой дает форму струны в любой момент времени t, т. е. найти решение уравнения (1) при граничных:

(2)

и начальных условиях:

(3)

Сначала будем искать решения уравнения (1), удовлетворяющие граничным условиям(2). Нетрудно увидеть, что u(x,t)0 является решением уравнения (1), удовлетворяющие граничным условиям(2). Будем искать решения, не равные тождественно 0, представимые в виде произведения

u(x,t)=X(x)T(t), (4) , где , .

Подстановка выражения (4) в уравнение (1) дает:

Из которого наша задача сводится к отысканию решений уравнений:

Используя это условие X(0)=0, X(l)=0, докажем, что отрицательное число, разобрав все случаи.

a) Пусть Тогда X”=0 и его общее решение запишется так:

откуда и ,что невозможно , так как мы рассматриваем решения, не обращающиеся тождественно в нуль.

б) Пусть . Тогда решив уравнение

получим , и, подчинив, найдем, что

в) Если то

Уравнения имеют корни :

получим:

где -произвольные постоянные. Из начального условия найдем:

откуда , т. е.

(n=1,2,...)

(n=1,2,...).

Учитывая это, можно записать:

(n=1,2,...).

и, следовательно

, (n=1,2,...),

но так как A и B разные для различных значений n то имеем

, (n=1,2,...),

где и произвольные постоянные, которые попытаемся определить таким образом, чтобы ряд удовлетворял уравнению (1), граничным условиям (2) и начальным условиям (3).

Итак, подчиним функцию u(x,t) начальным условиям, т. е. подберем и так , чтобы выполнялись условия

Эти равенства являются соответственно разложениями функций и на отрезки [0, l] в ряд Фурье по синусам. ( Это значит что коэффициенты будут вычисляться как для нечетной функций). Таким образом, решение о колебании струны с заданным граничными и начальными условиями дается формулой

где

(n=1,2,...)

Список рекомендованной литературы

1. Красс М.С., Чупринов Б.П. Основы математики и её приложения в экономическом образовании. М.: Дело, 2003

2. Кремер Н.Ш. Высшая математика для экономистов . М.:ЮНИТИ,2003

3. Демидович Б.П., Кудрявцев В.А. Краткий курс высшей математики. М.: АСТ 2004

4. Данко П.Е., Попов В.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. (I,II часть) М.:Высшая школа, 1986

5. Д. Письменный Конспект лекций по высшей математике. 2-я часть М.: Айрис-пресс,2004

6. Асеев Г.Г Дискретная математика. Учебное пособие. Ростов н/Д: “Феникс”,2003

Размещено на Allbest.ru

...

Подобные документы

  • Разложение в ряд Фурье. Определение функции и нахождение коэффициентов разложения. Проведение замены в интеграле. Условия теоремы о разложении функции в ряд Фурье. Примеры взятия интеграла по частям. Разложение в ряд Фурье четных и нечетных функций.

    презентация [73,1 K], добавлен 18.09.2013

  • Общее определение коэффициентов по методу Эйлера-Фурье. Ортогональные системы функций. Интеграл Дирихле, принцип локализации. Случай непериодической функции, произвольного промежутка, четных и нечетных функций. Примеры разложения функций в ряд Фурье.

    курсовая работа [296,3 K], добавлен 12.12.2010

  • Векторные пространства, скалярное произведение и норма функций, ортогональные системы функций, равенства и тригонометрический ряд Фурье. Сходимость интеграла Фурье, основные сведения теории преобразования. Операционное исчисление, преобразование Лапласа.

    учебное пособие [1,2 M], добавлен 23.12.2009

  • Условия разложения функций для тригонометрического ряда. Определение коэффициентов разложения с помощью ортогональности систем тригонометрических функций. Понятие периодического продолжения функции, заданной на отрезке. Ряд Фурье функции у=f(x).

    презентация [30,4 K], добавлен 18.09.2013

  • Определение числа гармоник разложения функций в ряд Фурье, содержащих в сумме не менее 90% энергии. Построение амплитудного и фазового спектров функции, графика суммы ряда. Расчет среднеквадратичной ошибки между исходной функцией и частичной суммой Фурье.

    контрольная работа [348,5 K], добавлен 13.12.2011

  • Введение новых динамических систем и их решений, специальных функций эллиптических и тета-функций, зависящих от одного параметра, разложение эллиптических функций Якоби в ряды Фурье (теоремы разложения). Рассмотрение их связи с функцией Вейерштрасса.

    курсовая работа [1,9 M], добавлен 26.04.2011

  • Образование множеством функций системы ортонормированных функций, условия ортогональности для заданной системы. Разложение в тригонометрический и комплексный ряды Фурье пилообразного сигнала. Генерирование программного произвольного дискретного сигнала.

    контрольная работа [378,6 K], добавлен 14.01.2016

  • Алгоритм вычисления преобразования Фурье для дискретного случая. Дискретное преобразование Фурье. Спектральное представление и спектральные характеристики периодического сигнала, четной непериодической функции и произвольного непериодического сигнала.

    курсовая работа [932,9 K], добавлен 23.01.2022

  • Свойства дискретного преобразования Фурье, представленные в виде математических формул, которые наиболее адекватно соответствуют цифровой технике обработки информации. Алгоритм быстрого преобразования Фурье (БПФ), его значение для программирования.

    учебное пособие [223,6 K], добавлен 11.02.2014

  • Интеграл Фурье в комплексной форме. Формулировка теоремы о сходимости интеграла для кусочно-гладких и абсолютно интегрируемых на числовой прямой функции. Примеры нахождения преобразования Фурье, сверстка и преобразование, спектр, некоторые приложения.

    курсовая работа [231,5 K], добавлен 27.08.2012

  • Алгоритм введения понятия ряда Фурье, опирающийся на моделирование физических задач в теоретическом курсе высшей математики для студентов физико-математических и инженерно-технических специальностей вузов. Функции и свойства рядов, их физический смысл.

    курсовая работа [1,8 M], добавлен 20.05.2015

  • Общая характеристика математической модели радиотехнического сигнала. Значение спектрального разложения функций в радиотехнике. Работа вещественных одномерных детерминированных сигналов и система синусоидальных и косинусоидальных гармонических функций.

    курсовая работа [1,0 M], добавлен 13.08.2011

  • Рассмотрение задач с двойными и тройными интегралами, применение к ним геометрического и симплекс методов решения; описание теоретической и практической части. Разложение функции в ряд Фурье по синусам и определение наибольшего и наименьшего значения.

    курсовая работа [185,1 K], добавлен 28.04.2011

  • Главные особенности вычисления преобразования Фурье, приложения и методы использования их на практике. Решение сложных уравнений физики, описывающих динамические процессы, которые возникают под воздействием электрической, тепловой или световой энергии.

    контрольная работа [151,0 K], добавлен 14.12.2013

  • Преобразования Фурье, представление периодической функции суммой отдельных гармонических составляющих. Использование преобразований как для непрерывных функций времени, так и для дискретных. Программа и примеры реализации алгоритмов с прореживанием.

    реферат [1,6 M], добавлен 25.05.2010

  • Нахождение спектральных составляющих дискретного комплексного сигнала. Быстрое преобразование Фурье с прореживанием по времени. Методы сокращения числа комплексных умножений. Вычислительные процедуры, уменьшающие количество умножений и сложений.

    презентация [133,3 K], добавлен 19.08.2013

  • Изучение способов работы с файлами с помощью автоматического преобразования данных. Решение иррациональных уравнений методами хорд и половинного деления. Вычисление определенного интеграла. Решение систем линейных алгебраических уравнений. Ряды Фурье.

    курсовая работа [759,3 K], добавлен 16.08.2012

  • Пространство обобщенных функций. Дифференциальные уравнения в обобщенных функциях. Преобразования Лапласа и Фурье. Обобщенные функции, отвечающие квадратичным формам с комплексными коэффициентами. Нахождение решения в математическом пакете Maple.

    курсовая работа [516,1 K], добавлен 25.06.2013

  • Дискретный периодический сигнал, представленный рядом Фурье. Прямое и обратное дискретное преобразование. Его свойства: линейность и симметрия. Алгоритм вычисления круговой свертки сигналов. Равенство Парсеваля для них. Связь ДПФ с Z-преобразованием.

    презентация [72,0 K], добавлен 19.08.2013

  • Элементарные многоэкстремальные функции, направления их исследования и вычисление основных параметров. Сравнительный анализ ЭМЭФ-преобразования и преобразования Фурье. Механизм и значение обнаружения слабого сигнала на фоне сильной низкочастотной помехи.

    статья [126,0 K], добавлен 03.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.