Интерполяционные формулы Ньютона

Рассмотрение понятия интерполяции и ее практического применения. Нахождение промежуточных значений величины по имеющемуся дискретному набору известных значений. Экстраполирование функции с использованием первой и второй интерполяционных формул Ньютона.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 23.12.2014
Размер файла 94,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Московский государственный университет приборостроения и информатики Сергиево-Посадский филиал

Реферат на тему:

Интерполяционные формулы Ньютона

Выполнила: Бревчик Таисия Юрьевна

Студентка 2 курса группы ЭФ-2

2014

Содержание

1.Введение

2. Первая интерполяционная формула Ньютона

3. Вторая интерполяционная формула Ньютона

Заключение

Список литературы

Введение

Интерполямция, интерполимрование -- в вычислительной математике способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений.

Многим из тех, кто сталкивается с научными и инженерными расчётами, часто приходится оперировать наборами значений, полученных опытным путём или методом случайной выборки. Как правило, на основании этих наборов требуется построить функцию, на которую могли бы с высокой точностью попадать другие получаемые значения. Такая задача называется аппроксимацией. Интерполяцией называют такую разновидность аппроксимации, при которой кривая построенной функции проходит точно через имеющиеся точки данных.

Существует также близкая к интерполяции задача, которая заключается в аппроксимации какой-либо сложной функции другой, более простой функцией. Если некоторая функция слишком сложна для производительных вычислений, можно попытаться вычислить её значение в нескольких точках, а по ним построить, то есть интерполировать, более простую функцию.

Разумеется, использование упрощенной функции не позволяет получить такие же точные результаты, какие давала бы первоначальная функция. Но в некоторых классах задач достигнутый выигрыш в простоте и скорости вычислений может перевесить получаемую погрешность в результатах.

Следует также упомянуть и совершенно другую разновидность математической интерполяции, известную под названием «интерполяция операторов».

К классическим работам по интерполяции операторов относятся теорема Рисса -- Торина (Riesz-Thorin theorem) и теорема Марцинкевича (Marcinkiewicz theorem), являющиеся основой для множества других работ.

Рассмотрим систему несовпадающих точек () из некоторой области . Пусть значения функции известны только в этих точках:

Задача интерполяции состоит в поиске такой функции из заданного класса функций, что

Точки называют узлами интерполяции, а их совокупность -- интерполяционной сеткой.

Пары называют точками данных или базовыми точками.

Разность между «соседними» значениями -- шагом интерполяционной сетки. Он может быть как переменным, так и постоянным.

Функцию -- интерполирующей функцией или интерполянтом.

1. Первая интерполяционная формула Ньютона

1. Описание задачи. Пусть для функции заданы значения для равноотстоящих значений независимой переменной: , , где - шаг интерполяции. Требуется подобрать полином степени не выше , принимающий в точках значения

,. (1)

Условия (1) эквивалентны тому, что при .

Интерполяционный полином Ньютона имеет вид:

. (2)

Легко видеть, что полином (2) полностью удовлетворяет требованиям поставленной задачи. Действительно, во-первых, степень полинома не выше , во-вторых,

и , .

Заметим, что при формула (2) превращается в ряд Тейлора для функции :

.

Для практического использования интерполяционную формулу Ньютона (2) обычно записывают в несколько преобразованном виде. Для этого введём новую переменную по формуле ; тогда получим:

, (3)

где представляет собой число шагов, необходимых для достижения точки , исходя из точки . Это и есть окончательный вид интерполяционной формулы Ньютона.

Формулу (3) выгодно использовать для интерполирования функции в окрестности начального значения , где мало по абсолютной величине.

Если дана неограниченная таблица значений функции , то число в интерполяционной формуле (3) может быть любым. Практически в этом случае число выбирают так, чтобы разность была постоянной с заданной степенью точности. За начальное значение можно принимать любое табличное значение аргумента .

Если таблица значений функции конечна, то число ограничено, а именно: не может быть больше числа значений функции , уменьшенного на единицу.

Заметим, что при применении первой интерполяционной формулы Ньютона удобно пользоваться горизонтальной таблицей разностей, так как тогда нужные значения разностей функции находятся в соответствующей горизонтальной строке таблицы.

2. Пример. Приняв шаг , построить интерполяционный полином Ньютона для функции , заданной таблицей

1

1,05

1,1

1,15

1,2

1,25

1,3

-3

-3,685

-4,445

-5,285

-6,207

-7,218

-8,321

Решение. Составляем таблицу разностей (таблица 1).

Так как разности третьего порядка практически постоянны, то в формуле (3) полагаем . Приняв , , будем иметь:

, или

,

где . Это и есть искомый интерполяционный полином Ньютона.

Таблица 1

1

1,05

1,1

1,15

1,2

1,25

1,3

-3

-3,685

-4,445

-5,285

-6,207

-7,218

-8,321

0,685

0,76

0,84

0,922

1,011

1,103

-0,075

-0,08

-0,082

-0,089

-0,092

0,005

0,002

0,007

0,003

Полученный полином дает возможность прогнозирования. Достаточную точность получаем при решении интерполяционной задачи, например, .Точность падает при решении экстраполяционной задачи, например, .

2. Вторая интерполяционная формула Ньютона

Первая интерполяционная формула Ньютона практически неудобна для интерполирования функции вблизи узлов таблицы. В этом случае обычно применяется вторая интерполяционная формула Ньютона.

Описание задачи. Пусть имеем последовательность значений функции

,

для равноотстоящих значений аргумента , где - шаг интерполяции. Построим полином следующего вида:

,

или, используя обобщённую степень, получаем:

. (1)

Тогда, при выполнении равенства , , получим

, .

Подставим эти значения в формулу (1). Тогда, окончательно, вторая интерполяционная формула Ньютона имеет вид:

. (2)

Введём более удобную запись формулы (2). Пусть , тогда

, и т. д.

Подставив эти значения в формулу (2), получим:

. (3)

Это и есть обычный вид второй интерполяционной формулы Ньютона. Для приближённого вычисления значений функции полагают:

.

Как первая, так и вторая интерполяционные формулы Ньютона могут быть использованы для экстраполирования функции, т. е. для нахождения значений функции для значений аргументов , лежащих вне пределов таблицы.

Если и близко к , то выгодно применять первую интерполяционную формулу Ньютона, причём тогда . Если же и близко к , то удобнее пользоваться второй интерполяционной формулой Ньютона, причём .

Таким образом, первая интерполяционная формула Ньютона обычно используется для интерполирования вперёд и экстраполирования назад, а вторая интерполяционная формула Ньютона, наоборот, - для интерполирования назад и экстраполирования вперёд.

Заметим, что операция экстраполирования, вообще говоря, менее точна, чем операция интерполирования в узком смысле слова.

Пример. Приняв шаг , построить интерполяционный полином Ньютона для функции , заданной таблицей

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,875

0,7088

0,5361

0,3572

0,173

-0,0156

-0,2081

Решение. Составляем таблицу разностей (таблица 1). Так как разности третьего порядка практически постоянны, то в формуле (3) полагаем . Приняв , , будем иметь:

, или

,

где .

Это и есть искомый интерполяционный полином Ньютона.

Таблица 1

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,875

0,7088

0,5361

0,3572

0,173

-0,0156

-0,20

-0,1662

-0,1727

-0,1789

-0,1842

-0,1886

-0,1925

-0,0065

-0,0062

-0,0053

-0,0044

-0,0039

0,0003

0,0009

0,0009

0,0005

Заключение

интерполяция ньютон экстраполирование формула

В вычислительной математике существенную роль играет интерполяция функций, т.е. построение по заданной функции другой (как правило, более простой), значения которой совпадают со значениями заданной функции в некотором числе точек. Причем интерполяция имеет как практическое, так и теоретическое значение. На практике часто возникает задача о восстановлении непрерывной функции по ее табличным значениям, например полученным в ходе некоторого эксперимента. Для вычисления многих функций оказывается эффективно приблизить их полиномами или дробно-рациональными функциями. Теория интерполирования используется при построении и исследовании квадратурных формул для численного интегрирования, для получения методов решения дифференциальных и интегральных уравнений.

Список литературы

1. В.В. Иванов. Методы вычислений на ЭВМ. Справочное пособие. Изд-во "Наукова думка". Киев. 1986.

2. Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. Численные методы. Изд-во "Лаборатория базовых знаний". 2003.

3. И.С. Березин, Н.П. Жидков. Методы вычислений. Изд. ФизМатЛит. Москва. 1962.

4. К. Де Бор. Практическое руководство по сплайнам. Изд-во "Радио и связь". Москва. 1985.

5. Дж. Форсайт, М.Мальком, К. Моулер. Машинные методы математических вычислений. Изд-во "Мир". Москва. 1980.

Размещено на Allbest.ru

...

Подобные документы

  • Применение первой и второй интерполяционной формул Ньютона. Нахождение значений функции в точках, не являющимися табличными. Bспользование формулы Ньютона для не равностоящих точек. Нахождение значения функции с помощью интерполяционной схемы Эйткена.

    лабораторная работа [481,0 K], добавлен 14.10.2013

  • Иоганн Карл Фридрих Гаусс - величайший математик всех времен. Интерполяционные формулы Гаусса, дающие приближенное выражение функции y=f(x) при помощи интерполяции. Области применение формул Гаусса. Основные недостатки интерполяционных формул Ньютона.

    контрольная работа [207,3 K], добавлен 06.12.2014

  • Интерполирование функции в точке, лежащей в окрестности середины интервала. Интерполяционные формулы Гаусса. Формула Стирлинга как среднее арифметическое интерполяционных формул Гаусса. Кубические сплайн-функции как математическая модель тонкого стержня.

    презентация [88,1 K], добавлен 18.04.2013

  • Непрерывная и точечная аппроксимация. Интерполяционные полиномы Лагранжа и Ньютона. Погрешность глобальной интерполяции, квадратичная зависимость. Метод наименьших квадратов. Подбор эмпирических формул. Кусочно-постоянная и кусочно-линейная интерполяции.

    курсовая работа [434,5 K], добавлен 14.03.2014

  • Методы хорд и итераций, правило Ньютона. Интерполяционные формулы Лагранжа, Ньютона и Эрмита. Точечное квадратичное аппроксимирование функции. Численное дифференцирование и интегрирование. Численное решение обыкновенных дифференциальных уравнений.

    курс лекций [871,5 K], добавлен 11.02.2012

  • Осуществление интерполяции с помощью полинома Ньютона. Уточнение значения корня на заданном интервале тремя итерациями и нахождение погрешности вычисления. Применение методов Ньютона, Сампсона и Эйлера при решении задач. Вычисление производной функции.

    контрольная работа [155,2 K], добавлен 02.06.2011

  • В вычислительной математике существенную роль играет интерполяция функций. Формула Лагранжа. Интерполирование по схеме Эйткена. Интерполяционные формулы Ньютона для равноотстоящих узлов. Формула Ньютона с разделенными разностями. Интерполяция сплайнами.

    контрольная работа [131,6 K], добавлен 05.01.2011

  • Вычисление производной по ее определению, с помощью конечных разностей и на основе первой интерполяционной формулы Ньютона. Интерполяционные многочлены Лагранжа и их применение в численном дифференцировании. Метод Рунге-Кутта (четвертого порядка).

    реферат [71,6 K], добавлен 06.03.2011

  • Кінцеві різниці різних порядків. Залежність між кінцевими різницями і функціями. Дискретний і неперервний аналіз. Поняття про розділені різниці. Інтерполяційна формула Ньютона. Порівняння формул Лагранжа і Ньютона. Інтерполяція для рівновіддалених вузлів.

    контрольная работа [75,6 K], добавлен 06.02.2014

  • Нахождение интерполяционных многочленов Лагранжа и Ньютона, проходящих через четыре точки заданной функции, сравнение их степенных представлений. Решение нелинейного дифференциального уравнения методом Эйлера. Решение систем алгебраических уравнений.

    задача [226,9 K], добавлен 21.06.2009

  • Число Пи как математическая константа. Основные особенности вычисления числа Пи. Методы определения численного значения числа Пи. Влияние трудов И. Ньютона и Г. Лейбница на ускорение вычисления приближенных значений Пи. Анализ формул древних ученных.

    курсовая работа [1,8 M], добавлен 26.09.2012

  • Характеристика важнейших типов сходимости итерационных последовательностей. Специфические особенности применения метода Ньютона для определения кратных корней. Алгоритм нахождения корней трансцендентного уравнения с использованием метода секущих.

    дипломная работа [964,9 K], добавлен 09.06.2019

  • Нахождение области определения, области значений функции, построение ее графиков с помощью преобразований кривых. График линейной функции с областью значений - все положительные действительные числа. Исследование функции на непрерывность. Расчет предела.

    контрольная работа [922,4 K], добавлен 13.12.2012

  • Векторная запись нелинейных систем. Метод Ньютона, его сущность, реализации и модификации. Метод Ньютона с последовательной аппроксимацией матриц. Обобщение полюсного метода Ньютона на многомерный случай. Пример реализации метода Ньютона в среде MATLAB.

    реферат [140,2 K], добавлен 27.03.2012

  • Основные понятия и некоторые классические теоремы теории интерполяции. Определение общих свойств пространств Лоренца. Понятие нормы и спектрального радиуса неотрицательных матриц. Исследование интерполяционных признаков семейств конечномерных пространств.

    курсовая работа [289,9 K], добавлен 12.01.2011

  • Ознакомление с историей понятия интеграла. Распространение интегрального исчисления, открытие формулы Ньютона–Лейбница. Символ суммы; расширение понятия суммы. Описание необходимости выражения всех физических явлений в виде математической формулы.

    презентация [1,9 M], добавлен 26.01.2015

  • Задачи нахождения собственных значений и соответствующих им собственных векторов. Математическое обоснование метода итераций. Алгоритм метода Леверрье-Фаддеева, численное решение оценки собственных значений матриц. Листинг программы на языке "Pascal".

    курсовая работа [221,8 K], добавлен 05.11.2014

  • Вычисление вероятностей возможных значений случайной величины по формуле Бернулли. Расчет математического ожидания, дисперсии, среднеквадратического отклонения, медианы и моды. Нахождение интегральной функции, построение многоугольника распределения.

    контрольная работа [162,6 K], добавлен 28.05.2012

  • Область определения функции, которая содержит множество возможных значений. Нахождение закона распределения и характеристик функции случайной величины, если известен закон распределения ее аргумента. Примеры определения дискретных случайных величин.

    презентация [68,7 K], добавлен 01.11.2013

  • Особенности применения степенных рядов для вычислений с различной степенью точности значений функций и определенных интегралов. Рассмотрение примеров решения ряда задач этим математическим методом с условием принятия значений допустимой погрешности.

    презентация [68,4 K], добавлен 18.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.