Теорема Коши-Бине
Назначение матриц в системах линейных уравнений, операции над матрицами, правила их сложения матриц и умножения на скаляр, транспонирование произведения двух матриц. Понятие и свойства определителя квадратной матрицы, доказательство теоремы Коши-Бине.
Рубрика | Математика |
Предмет | Высшая математика |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | maneyplus |
Дата добавления | 11.01.2015 |
Размер файла | 552,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Основные операции над матрицами и их свойства. Произведение матриц или перемножение матриц. Блочные матрицы. Понятие определителя. Панель инструментов Матрицы. Транспонирование. Умножение. Определитель квадратной матрицы. Модуль вектора.
реферат [109,2 K], добавлен 06.04.2003Применение матриц и их виды (равные, квадратные, диагональные, единичные, нулевые, вектор-строка, вектор-столбец). Примеры действий над матрицами (умножение на число, сложение, вычитание, умножение и транспонирование матриц) и свойства полученных матриц.
презентация [74,7 K], добавлен 21.09.2013Определение матрицы, характеристика основных ее видов. Правила транспонирования матриц. Элементы матрицы-произведения. Свойства определителей, примеры нахождения. Формулировка и следствие теоремы о ранге матрицы. Доказательство теоремы Кронекера-Капелли.
реферат [60,2 K], добавлен 17.06.2014Понятие равных матриц, их суммы и произведения. Нахождение элемента матрицы, свойства ее произведения. Расположение вне главной диагонали элементов квадратной матрицы. Понятие обратной матрицы, матричные уравнения. Теорема о базисном миноре, ранг матрицы.
реферат [105,3 K], добавлен 21.08.2009Линейные операции над матрицами. Умножение и вычисление произведения матриц. Приведение матрицы к ступенчатому виду и вычисление ранга матрицы. Вычисление обратной матрицы и определителя матрицы, а также решение систем линейных уравнений методом Гаусса.
учебное пособие [658,4 K], добавлен 26.01.2009Понятие, типы и алгебра матриц. Определители квадратной матрицы и их свойства, теоремы Лапласа и аннулирования. Понятие обратной матрицы и ее единственность, алгоритм построения и свойства. Определение единичной матрицы только для квадратных матриц.
реферат [296,6 K], добавлен 12.06.2010Правила произведения матрицы и вектора, нахождения обратной матрицы и ее определителя. Элементарные преобразования матрицы: умножение на число, прибавление, перестановка и удаление строк, транспонирование. Решение системы уравнений методом Гаусса.
контрольная работа [462,6 K], добавлен 12.11.2010Понятие и типы матриц. Определители (детерминанты) квадратной матрицы и их свойства. Алгебраические действия над матрицами. Теоремы Лапласа и аннулирования. Понятие и свойства обратной матрицы, алгоритм ее построения. Единственность обратной матрицы.
курс лекций [336,5 K], добавлен 27.05.2010Основные действия над матрицами, операция их умножения. Элементарные преобразования матрицы, матричный метод решения систем линейных уравнений. Элементарные преобразования систем, методы решения произвольных систем линейных уравнений, свойства матриц.
реферат [111,8 K], добавлен 09.06.2011Размеры прямоугольной, квадратной, диагональной, скалярной матриц. Линейные операции над матрицами. Умножение строки на столбец (скалярное произведение). Транспонирование матрицы, ее элементы. Образование треугольной таблицы, состоящей из строк, столбцов.
презентация [1,4 M], добавлен 03.12.2016Понятие "матрица" в математике. Операция умножения (деления) матрицы любого размера на произвольное число. Операция и свойства умножения двух матриц. Транспонированная матрица – матрица, полученная из исходной матрицы с заменой строк на столбцы.
контрольная работа [26,2 K], добавлен 21.07.2010Теорема Ролля и ее доказательство, структура и геометрический смысл. Сущность теоремы о среднем, принадлежащей Лагранжу, использование в ней результатов теоремы Ролля. Отражение и обобщение работы Лагранжа в теореме Коши, методика ее доказательства.
реферат [208,2 K], добавлен 15.08.2009Понятие матрицы и линейные действия над ними. Свойства операции сложения матриц. Определители второго и третьего порядков. Применение правила Саррюса. Основные методы решения определителей. Элементарные преобразования матрицы. Свойства обратной матрицы.
учебное пособие [223,0 K], добавлен 04.03.2010Определение, свойства, виды и историческое происхождение матриц. Расчет определителя третьего порядка. Правило Саррюса для треугольников. Алгоритм построения и единственность обратной матрицы. Исследование линейных отображений векторных пространств.
контрольная работа [308,2 K], добавлен 12.12.2013Доказательство линейной независимости системы векторов пирамиды. Расчет длины ребра, угла между ребрами. Составление уравнения прямой и плоскости. Выполнение операций для матриц. Величина главного определителя. Поиск алгебраических дополнений матрицы.
контрольная работа [156,0 K], добавлен 20.03.2017Интерпретация ортогональной и унитарной матрицы. Основные детерминанты матриц. Определение комплексных квадратных невырожденных и вырожденных матриц. Методы нахождения определителя. Метод конденсации Доджсона. Кососимметричная полилинейная функция строк.
курсовая работа [620,9 K], добавлен 04.06.2015Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.
контрольная работа [63,2 K], добавлен 24.10.2010Назначение и определение алгебраического дополнения элемента определителя. Особенности неоднородной системы линейных алгебраических уравнений. Определение размера матрицы. Решение системы уравнений методом Крамера. Скалярные и векторные величины.
контрольная работа [320,1 K], добавлен 13.07.2009Форма записи и методы решения системы алгебраических уравнений с n неизвестными. Умножение и нормы векторов и матриц. Свойства определителей матрицы. Собственные значения и собственные векторы. Примеры использования числовых характеристик матриц.
реферат [203,0 K], добавлен 12.08.2009Методика расчета скалярного произведения заданных векторов. Расчет определителей и рангов матриц, нахождение обратных матриц. Разрешение уравнений по методу Крамера, обратной матрицы, а также встроенной функции lsolve. Анализ полученных результатов.
лабораторная работа [86,8 K], добавлен 13.10.2014