Классические и статистические определения вероятности

Характеристика понятия вероятности. Изучение истории возникновения понятия и теории вероятности. Рассмотрение методик определения вероятности: классической и статической, сравнение их основных преимуществ и недостатков. Изучение свойств вероятности.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 12.01.2015
Размер файла 93,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Вероямтность -- степень (мера, количественная оценка) возможности наступления некоторого события. Когда основания для того, чтобы какое-нибудь возможное событие произошло в действительности, перевешивают противоположные основания, то это событие называют вероятным, в противном случае -- невероятным или маловероятным. Перевес положительных оснований над отрицательными, и наоборот, может быть в различной степени, вследствие чего вероятность (и невероятность) бывает большей или меньшей. Поэтому часто вероятность оценивается на качественном уровне, особенно в тех случаях, когда более или менее точная количественная оценка невозможна или крайне затруднительна. Возможны различные градации «уровней» вероятности.

Классическое определение вероятности основано на понятии равно возможности исходов. В качестве вероятности выступает отношение количества исходов, благоприятствующих данному событию, к общему числу равновозможных исходов. Например, вероятность выпадения «орла» или «решки» при случайном подбрасывании монетки равна 1/2, если предполагается, что только эти две возможности имеют место и они являются равновозможными. Данное классическое «определение» вероятности можно обобщить на случай бесконечного количества возможных значений -- например, если некоторое событие может произойти с равной вероятностью в любой точке (количество точек бесконечно) некоторой ограниченной области пространства (плоскости), то вероятность того, что оно произойдет в некоторой части этой допустимой области равна отношению объёма (площади) этой части к объёму (площади) области всех возможных точек.

Вероятностное описание тех или иных явлений получило широкое распространение в современной науке, в частности в эконометрике, статистической физике макроскопических (термодинамических) систем, где даже в случае классического детерминированного описания движения частиц детерминированное описание всей системы частиц не представляется практически возможным и целесообразным. В квантовой физике сами описываемые процессы имеют вероятностную природу.

Возникновение понятия и теории вероятности

Первые работы об учении о вероятности относится к 17 веку. Такие как переписка французских учёных Б. Паскаля, П. Ферма (1654 год) и голландского учёного X. Гюйгенса (1657 год) давшего самую раннюю из известных научных трактовок вероятности]. По существу Гюйгенс уже оперировал понятием математического ожидания. Швейцарский математик Я. Бернулли, установил закон больших чисел для схемы независимых испытаний с двумя исходами (посмертно, 1713 год). В XVIII в. -- начале ХIХ в. теория вероятностей получает развитие в работах А. Муавра (Англия)(1718 год), П. Лаплас (Франция), К. Гаусса (Германия) и С. Пуассона (Франция). Теория вероятностей начинает применяться в теории ошибок наблюдений, развившейся в связи с потребностями геодезии и астрономии, и в теории стрельбы. Необходимо отметить, что закон распределения ошибок по сути предложил Лаплас сначала как экспоненциальная зависимость от ошибки без учета знака (в 1774 год), затем как экспоненциальную функцию квадрата ошибки (в 1778 году). Последний закон обычно называют распределением Гаусса или нормальным распределением. Бернулли (1778 год) ввел принцип произведения вероятностей одновременных событий. Адриен Мари Лежандр (1805) разработал метод наименьших квадратов.

Во второй половине XIX в. развитие теории вероятностей связано с работами русских математиков П. Л. Чебышева, А. М. Ляпунова и А. А. Маркова (старшего), а также работы по математической статистике А. Кетле (Бельгия) и Ф. Гальтона (Англия) и статистической физике Л. Больцмана (в Австрия), которые создали основу для существенного расширения проблематики теории вероятностей. Наиболее распространённая в настоящее время логическая (аксиоматическая) схема построения основ теории вероятностей разработана в 1933 советским математиком А. Н. Колмогоровым.

Классическое определение вероятности:

По классическому определению вероятность случайного события Р(А) равна отношению числа исходов, благоприятствующих А, к общему числу исходов, составляющих пространство элементарных событий, т.е.

вероятность статический классический теория

Вычисление вероятностей при этом сводится к подсчету элементов того или иного множества и часто оказывается чисто комбинаторной задачей, иногда весьма трудной.

Классическое определение оправдано, когда существует возможность предсказания вероятности на основании симметрии условий, при которых происходит эксперимент, и вследствие этого симметрии исходов испытания, что приводит к понятию "равно возможности" исходов.

Например. Если сделанная из однородного материала геометрически правильная игральная кость подбрасывается так, что она успевает сделать достаточно большое число оборотов перед тем, как упасть, то выпадение любой из ее граней считается равновозможным исходом.

По тем же соображениям симметрии считаются равновозможными исходы такого эксперимента, как вынимание тщательно перемешанных и неотличимых на ощупь белых и черных шаров так, что после регистрации цвета каждый шар возвращается обратно в сосуд и после тщательного перемешивания производится извлечение следующего шара.

Чаще всего такая симметрия наблюдается в искусственно организованных экспериментах, какими являются азартные игры.

Таким образом, классическое определение вероятности связано с понятием равно возможности и используется для экспериментов, сводящихся к схеме случаев. Для этого необходимо, чтобы события e1, e2, en были несовместными, т. е. никакие два из них не могут появиться вместе; такими, что образуют полную группу, т. е. они исчерпывают собой все возможные исходы (не может быть так, что в результате опыта ни одно из них не произошло); равновозможными при условии, что эксперимент обеспечивает одинаковую возможность появления каждого из них.

Не всякий эксперимент удовлетворяет схеме случаев. Если нарушается условие симметрии, то нет схемы случаев.

Формула (1.1), "классическая формула", применялась для вычисления вероятностей событий с самого начала появления науки о случайных явлениях.

Те опыты, которые не обладали симметрией, "подгонялись" под схему случаев. В настоящее время наряду с "классической формулой" существуют способы вычисления вероятностей, когда эксперимент не сводится к схеме случаев. Для этого используется статистическое определение вероятности.

Понятие статистической вероятности будет введено позднее, а сейчас вернемся к классической формуле.

Рассмотрим следующие примеры.

Пример 1. Опыт состоит в бросании двух монет. Найти вероятность того, что появится хотя бы один герб.

Решение. Случайное событие А - появление хотя бы одного герба.

Пространство элементарных событий в данном эксперименте определяется следующими исходами: Е = {ГГ, ГР, РГ, РР}, которые соответственно обозначаются e1, e2, e3, e4. Таким образом,

E=e1, e2, e3, e4; n=4.

Необходимо определить число исходов из Е, которые благоприятствуют появлению А. Это e1, e2, e3; их число m=3.

Используя классическую формулу определения вероятности события А, имеем

.

Пример 2. В урне 3 белых и 4 черных шара. Из урны вынимается один шар. Найти вероятность того, что этот шар белый.

Решение. Случайное событие А - появление белого шара. Пространство элементарных событий Е включает исходы e1, e2, e3, e4, e5, e6, e7, где ei - появление одного шара (белого или черного);

E={e1, e2, e3, e4, 5, e6, e7}, n=7.

Случайному событию А в пространстве Е благоприятствует 3 исхода; m=3. Следовательно,

.

Пример 3. В урне 3 белых и 4 черных шара. Из урны вынимается два шара. Найти вероятность того, что оба будут белыми.

Решение. Случайное событие А - оба шара будут белыми.

Пример 3 отличается от примера 2 тем, что в примере 3 исходами, составляющими пространство элементарных исходов Е, будут не отдельные шары, а комбинации из 7 шаров по 2. То есть, чтобы определить размерность Е, необходимо определить число комбинаций из 7 по 2. Для этого необходимо использовать формулы комбинаторики, которые приводятся в разделе "Комбинаторный метод". В данном случае для определения числа комбинаций из 7 по 2 используется формула для определения числа сочетаний

,

так как выбор производится без возвращения и порядок появления шаров неважен. Таким образом,

.

Число комбинаций, благоприятных для появления события А, определяется в виде

.

Следовательно, .

Статистическое определение вероятности

При рассмотрении результатов отдельных испытаний очень трудно найти какие-либо закономерности. Однако в последовательности одинаковых испытаний можно обнаружить устойчивость некоторых средних характеристик. Частостью какого-либо события в данной серии из n испытаний называется отношение m/n, числа m тех испытаний, в которых событие А наступило, к общему числу испытаний n. Почти в каждой достаточно длинной серии испытаний частость события А устанавливается около определенного значения , которое принимается за вероятность событияА. Устойчивость значения частости подтверждается специальными экспериментами. Статистические закономерности такого рода были впервые обнаружены на примере азартных игр, т. е. на примере тех испытаний, которые характеризуются равно возможностью исходов. Это открыло путь для статистического подхода к численному определению вероятности, когда нарушается условие симметрии эксперимента. Частость события А называют статистической вероятностью, которая обозначается

где mA - число экспериментов, в которых появилось событие А;

n - общее число экспериментов.

Формулы (1.1) и (1.2) для определения вероятности имеют внешнее сходство, но они различны по существу. Формула (1.1) служит для теоретического вычисления вероятности события по заданным условиям опыта. Формула (1.2) служит для экспериментального определения частости события. Чтобы воспользоваться формулой (1.2), необходим опытный статистический материал.

Аксиоматический подход к определению вероятности

Третьим подходом к определению вероятности является аксиоматический подход, при котором вероятности задаются перечислением их свойств.

Принятое аксиоматическое определение вероятности было сформулировано в 1933 г. А. Н. Колмогоровым. В этом случае вероятность задается как числовая функция Р(А) на множестве всех событий, определяемых данным экспериментом, которая удовлетворяет следующим аксиомам:

.

P(A)=1, если А - достоверное событие.

, если А и В несовместны.

Основные свойства вероятности

Для каждого случайного события А определена его вероятность, причем .

Для достоверного события U имеет место равенство P(U)=1.
Свойства 1 и 2 следуют из определения вероятности.

Если события А и В несовместны, то вероятность суммы событий равна сумме их вероятностей. Это свойство носит название формулы сложения вероятностей в частном случае (для несовместных событий).

Для произвольных событий А и В

.

Это свойство носит название формулы сложения вероятностей в общем случае.

Для противоположных событий А и имеет место равенство .

Кроме этого, вводится невозможное событие, обозначенное , которому не способствует ни один исход из пространства элементарных событий. Вероятность невозможного события равна 0, P()=0 .

Пример. Вероятность того, что случайно выбранная в результате опроса семья имеет цветной, черно-белый или цветной и черно-белый телевизоры, равны соответственно 0.86; 0.35; 0.29. Какова вероятность, что семья имеет цветной или черно-белый телевизор?

Решение. Пусть событие А состоит в том, что семья имеет цветной телевизор.

Событие В состоит в том, что семья имеет черно-белый телевизор.

Событие С состоит в том, что семья имеет или цветной, или черно-белый телевизор. Событие С определяется через А и В в виде , А и В совместны, поэтому

.

Комбинаторный метод

Во многих вероятностных проблемах необходимо перечислить все возможные исходы эксперимента или элементарные события, которые возможны в данной ситуации, или вычислить их количество. Для этого можно использовать следующие правила.

Правило 1. Если операция состоит из двух шагов, в которых первый может быть сделан n1 способами и второй может быть сделан n2 способами, то вся операция может быть сделана за n1·n2 способов.

Под словом "операция" подразумевается любая процедура, процесс или метод выбора.

Чтобы подтвердить это правило, рассмотрим операцию, которая состоит из шагов xi и yi, шаг x может быть осуществлен n1 способами, т.е. , шаг y может быть осуществлен n2 способами, т.е. , тогда ряд всех возможных способов может быть представлен следующими n1n2 парами:

Пример. Сколько возможных исходов имеется в эксперименте, который состоит в подбрасывании двух игральных костей.

Решение. Под x и y в этом случае понимается выпадение любой грани на первой кости и на второй кости. Выпадение грани на первой кости возможно шестью способами xi, ; выпадение грани второй кости возможно также шестью способами xj, .

Всего возможных способов 6.6=36.

Правило 2. Если операция состоит из k шагов, в которых первый может быть сделан n1 способами, второй n2 способами, третий способами и т. д., k-й - способами, то вся операция может быть сделана за n1·n2…nk шагов.

Пример. Инспектор качества хочет выбрать часть из каждого из четырех контейнеров, содержащих 4, 3, 5 и 4 частей соответственно. Сколькими способами он может это сделать?

Решение. Общее число способов определяется как 4·3·5·4=240.

Пример. Сколькими возможными способами может ответить студент в тесте из 20 вопросов, если на каждый вопрос он может ответить "да" или "нет"?

Решение. Всех возможных способов 2·2...2=220=1048576.

Часто на практике возникает ситуация, когда объекты должны быть упорядочены.

Например: сколькими различными способами 6 персон могут сесть вокруг стола? Различные их расположения называются перестановками.

Пример. Сколько перестановок возможно для букв a, b, c?

Решение. Возможные расположения abc, acb, bac, bca, cab, cba. Число возможных расположений равно шести.

Используя правило 2, можно подсчитать число возможных расположений. Для первой позиции - 3 различных способа (из букв a, b, c). Для второй позиции - 2 различных способа. Для третьей позиции - 1 способ. Всего способов 1·2·3=6.

Обобщая данный пример, для n объектов всего n·(n-1)(n-2)…3 ·2 ·1 различных способов или n!, т. е. число перестановок n!=1·2·3...·(n-2)(n-1)n, при этом 0!=1.

Правило 3. Число перестановок n различных объектов равно n!.

Пример. Число перестановок из четырех букв 4!=24, но какое число перестановок получится, если выбирать по 2 буквы из четырех?

Решение. Мы должны заполнить две позиции из четырех букв. Для первой позиции - 4 способа, для второй позиции - 3 способа. Следовательно, используя правило 1, имеем 4·3=12.

Обобщая этот пример на n различных объектов, из которых выбирается r объектов без возвращения для r > 0, всего способов n(n-1)...(n-r+1). Это число обозначим , а получаемые комбинации называются размещениями.

Правило 4. Число размещений из n объектов по r определяется как

(для r = 0,1,...,n).

Перестановки, когда объекты располагаются по кругу, называются круговыми перестановками. Две круговые перестановки не являются различными (а считаются только одной), если соответствующие объекты в двух расположениях имеют те же самые объекты слева и справа.

Например: если четыре персоны играют в бридж, мы не получим различных расположений, если все игроки передвинутся на один стул справа.

Пример. Сколько круговых перестановок возможно из четырех персон, играющих в бридж? Решение. Если произвольно взять позицию одного из четырех игроков как фиксированную, можно трех остальных игроков расположить 3! способами, другими словами, имеем шесть различных круговых перестановок.

Обобщая этот пример, получаем следующее правило.

Правило 5. Число перестановок из n различных предметов, расположенных по кругу, равно (n-1)!.

До сих пор предполагалось, что n объектов, из которых мы выбираем r объектов и формируем перестановки, являются различными. Таким образом, упомянутые ранее формулы не могут быть использованы для определения числа способов расположения букв в слове "book" или числа способов расположения трех копий одной новеллы и одной копии каждой из четырех других новелл на полке.

Пример. Сколько различных перестановок букв в слове "book"?

Решение. Если важно различать буквы O, то мы их обозначим O1, O2 и тогда будем иметь 4!=24 различных перестановок букв в O1, O2 и K. Однако если мы опускаем индексы, то O1 O2 и O2, O1уже не различаются, тогда общее число перестановок равно .

Пример. Сколько различных способов расположения трех копий одной новеллы и одной копии других четырех новелл на полке?

Решение. Если обозначить три копии первой новеллы как a1, a2, a3 и другие четыре новеллы - b, c, d и e, то в данном случае имеем 7! различных способов и 3! способа расположить a1, a2, a3.

Если опустить индексы, то различных способов расположения копий .

Обобщая эти рассуждения, получим следующее правило.

Правило 6. Число перестановок n объектов, в которых n1 одного сорта, n2 - второго сорта, …, nk - k-го сорта и n1+n2+...+nk=n,

.

Много задач, в которых необходимо определить число способов выбора r объектов из n различных объектов, не обращая внимания на порядок, в котором они выбираются. Такие комбинации называются сочетаниями.

Пример. Сколькими способами можно выбрать трех кандидатов из 20-ти человек для общественного опроса?

Решение. Если нам важен порядок при выборе кандидатов, то число комбинаций , но каждый ряд из трех кандидатов может быть выбран 3! Способами; если порядок выбора не важен, то всего способов выбора .

Комбинации без возращения r объектов из n различных объектов, которые отличаются самими объектами, но не их порядком, называются сочетаниями.

Правило 7. Число комбинаций по r объектов из n разных объектов определяется числом , число сочетаний может обозначаться как .

Пример. Сколькими различными способами можно при шести подбрасываниях монеты получить 2 герба и 4 решки?

Решение. Так как порядок получения гербов и решек не важен, то, применяя правило 7, получим .

Пример. Сколько разных комитетов из двух химиков и одного физика может быть сформировано на факультете небольшого колледжа, имеющего 4 химика и 3 физика.

Решение. Число комбинаций из четырех химиков по 2 может быть получено (шестью) способами.

Один из трех физиков может быть выбран (тремя) способами.

Число комитетов, в соответствии с правилом 1, определяется как 6·3=18.

Пример. Сколькими способами можно разбить ряд из четырех объектов на три ряда, содержащих соответственно два, один и один объекта?

Решение. Обозначим данные четыре объекта буквами a, b, c, d. Число разбиений на два, один и один будет 12:

Разбиение из двух объектов можно получить способами, что дает 6 возможностей. Число способов сформировать второе разбиение . И для третьего разбиения число способов равно 1.

Согласно правилу 2 всего способов разбиения (6·2·1)=12.

Обобщая данный пример, получаем следующее правило.

Правило 8. Число способов, с помощью которых ряд из n различных объектов может быть разбит на k частей с n1 объектами в 1-й части, n2 во 2-й части, … и nk в k-й, определяется как

.

Пример. Сколькими способами 7 бизнесменов могут быть размещены в одном трехкомнатном и двух двухкомнатных номерах в отеле?

Решение. Согласно правилу 8 это можно сделать (двухсотдесятью) способами.

Доказательство правила 8

Так как n1 объектов могут быть выбраны в ряд способами, n2 могут быть выбраны

и т. д.

Согласно правилу 2 всего число способов будет определяться в виде

Задание для самостоятельной работы

1. Десять книг на одной полке расставляются наудачу. Определить вероятность того, что три определенные книги окажутся рядом.

Ответ: 0.066.

2. Из колоды карт (52 карты) наудачу извлекаются три карты. Найти вероятность того, что это будут тройка, семерка и туз.

Ответ: 0.0029.

3. Имеются пять билетов стоимостью по 1 рублю;

три билета стоимостью по 3 рубля;

два билета стоимостью по 5 рублей.

Наугад выбирается три билета. Определить вероятность того, что:

а) хотя бы два из этих билетов имеют одинаковую стоимость.

Ответ: 0.75;

б) все три билета стоят 7 рублей.

Ответ: 0.29.

4. В кошельке лежат три монеты достоинством по 20 копеек и семь монет достоинством по 3 копейки. Наудачу берется одна монета, а затем извлекается вторая монета достоинством в 20 копеек.

Определить вероятность того, что и первая монета имеет достоинство в 20 копеек.

Ответ: 0.22.

5. Из десяти билетов лотереи выигрышными являются два. Определить вероятность того, что среди взятых наудачу пяти билетов:

а) один выигрышный;

б) два выигрышных;

в) хотя бы один выигрышный.

Ответ: 0.55, 0.22, 0.78.

6. В корзине имеется n шаров с номерами от 1 до n, шары извлекаются наудачу по одному без возвращения. Какова вероятность того, что при k первых извлечениях номера шаров совпадут с номерами извлечений.

Ответ: (n - k)!/n!

Использованная литература

1. http://kurs.ido.tpu.ru/courses/theory_ver/tema2/tema2.html

2. http://free.megacampus.ru/xbookM0018/index.html?go=part-003*page.htm

3. http://www.testent.ru/publ/studenty/vysshaja_matematika/klassicheskoe_opredelenie_verojatnosti/35-1-0-1121

4. http://ru.wikipedia.org/

5. http://www.kolasc.net.ru/cdo/books/tv/page15.html

Размещено на Allbest.ru

...

Подобные документы

  • Разработка методических аспектов обучения учащихся элементам теории вероятностей. Способы определения, последовательности изложения трактовок вероятности и формирование аксиоматического понятия. Задачи, решаемые при изучении геометрической вероятности.

    курсовая работа [143,2 K], добавлен 03.07.2011

  • Теория вероятности как наука убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Математические доказательства теории. Аксиоматика теории вероятности: определения, вероятность пространства, условная вероятность.

    лекция [287,5 K], добавлен 02.04.2008

  • Возникновение теории вероятности как науки. Классическое определение вероятности. Частость наступления события. Операции над событиями. Сложение и умножение вероятности. Схема повторных независимых испытаний (система Бернулли). Формула полной вероятности.

    реферат [175,1 K], добавлен 22.12.2013

  • Применение классического определения вероятности в решении экономических задач. Определение вероятности попадания на сборку бракованных и небракованных деталей. Вычисление вероятности и выборочного значения статистики при помощи формулы Бернулли.

    контрольная работа [309,4 K], добавлен 18.09.2010

  • Определение вероятности появления поломок. Расчет вероятности успеха, согласно последовательности испытаний по схеме Бернулли. Нахождение вероятности определенных событий по формуле гипергеометрической вероятности. Расчет дискретной случайной величины.

    контрольная работа [69,3 K], добавлен 17.09.2013

  • Основные методы формализованного описания и анализа случайных явлений, обработки и анализа результатов физических и численных экспериментов теории вероятности. Основные понятия и аксиомы теории вероятности. Базовые понятия математической статистики.

    курс лекций [1,1 M], добавлен 08.04.2011

  • Алгоритм определения вероятности события и выполнения статистических ожиданий. Оценка возможных значений случайной величины и их вероятности. Расчет математического ожидания, дисперсии и среднего квадратического отклонения. Анализ характеристик признака.

    контрольная работа [263,8 K], добавлен 13.01.2014

  • Общее понятие и характеристика простейшего пространства элементарных исходов. Способы вычисления вероятности события. Классическая вероятностная модель, ее главные свойства и доказательства. Основные аксиомы теории вероятности, примеры решения задач.

    реферат [42,6 K], добавлен 24.04.2009

  • Порядок определения степени вероятности нахождения значения из десяти возможных. Методика вычисления стандартных деталей среди проверенных с вероятностью 0.95. Оценка вероятности подъема в цене акций предприятия, а также получения прибыли на бирже.

    контрольная работа [42,2 K], добавлен 16.10.2011

  • Практическиое решение задач по теории вероятности. Задача на условную вероятность. Задача на подсчет вероятностей. Задача на формулу полной вероятности. Задача на теорему о повторении опытов. Задача на умножение вероятностей. Задача на схему случаев.

    контрольная работа [29,7 K], добавлен 24.09.2008

  • Вычисление по классической формуле вероятности. Определение вероятности, что взятая наугад деталь не соответствует стандарту. Расчет и построение графиков функции распределения и случайной величины. Вычисление коэффициента корреляции между величинами.

    контрольная работа [708,2 K], добавлен 02.02.2011

  • Определение вероятности наступления определенного события по законам теории вероятности. Вычисление математического ожидания, дисперсии и среднего квадратичного отклонения. Нахождение выборочного уравнения регрессии по данным корреляционной таблицы.

    контрольная работа [212,0 K], добавлен 01.05.2010

  • Бесконечное число возможных значений непрерывных случайных величин. Рассмотрение непрерывной случайной величины Х с функцией распределения F(x). Кривая, изображающая плотность вероятности. Определение вероятности попадания на участок a до b через f(x).

    презентация [64,0 K], добавлен 01.11.2013

  • Число возможных вариантов, благоприятствующих событию. Определение вероятности того что, проектируемое изделие будет стандартным. Расчет возможности, что студенты успешно выполнят работу по теории вероятности. Построение графика закона распределения.

    контрольная работа [771,9 K], добавлен 23.12.2014

  • Определение вероятности случайного события, с использованием формулы классической вероятности, схемы Бернулли. Составление закона распределения случайной величины. Гипотеза о виде закона распределения и ее проверка с помощью критерия хи-квадрата Пирсона.

    контрольная работа [114,3 K], добавлен 11.02.2014

  • Изучение сути и выдвижение предположения о законе распределения вероятности экспериментальных данных. Понятие и оценка асимметрии. Принятие решения о виде закона распределения вероятности результата. Переход от случайного значения к неслучайной величине.

    курсовая работа [126,0 K], добавлен 27.04.2013

  • Теория вероятности как математическая наука, изучающая закономерность в массовых однородных случаях, явлениях и процессах, предмет, основные понятия и элементарные события. Определение вероятности события. Анализ основных теорем теории вероятностей.

    шпаргалка [777,8 K], добавлен 24.12.2010

  • Теория вероятности, понятие вероятности события и её классификация. Понятие комбинаторики и её основные правила. Теоремы умножения вероятностей. Понятие и виды случайных величин. Задачи математической статистики. Расчёт коэффициента корреляции.

    шпаргалка [945,2 K], добавлен 18.06.2012

  • Понятие вероятности, математического ожидания, закона больших чисел, динамика их развития. Введение аксиоматического определения понятия вероятности математического ожидания. Теоремы Бернулли и Пуассона как простейшие формы закона больших чисел.

    дипломная работа [388,7 K], добавлен 23.08.2009

  • Характеристика полной группы событий как совокупность всех возможных результатов опыта. Способы определения вероятности событий в задачах разного направления. Нахождение вероятности количества нестандартных деталей. Построение функции распределения.

    задача [37,9 K], добавлен 19.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.