Определение вероятности событий

Вычисление вероятности того, что телефонный номер не содержит цифры пять; выхода прибора из строя в результате отказа одного из его блоков. Определение математического ожидания, дисперсии, функции распределения случайной величины. Построение ее графика.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 13.01.2015
Размер файла 91,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Задача №1.

Телефонный номер состоит из шести цифр, каждая из которых равновозможно принимает значения от 0 до 9. Вычислить вероятность того, что номер не содержит цифры пять

Решение

Событие А состоит в том, что номер не содержит цифры пять. Так как номер шестизначный, а цифр всего 10, то общее число исходов n опыта равно числу размещений с повторением элементов из 10 по 6:

Рассчитаем число благоприятствующих исходов m опыта, при которых появление цифры 5 исключается. То есть k равно числу размещений с повторением элементов из 9 по 6, так цифр теперь на одну меньше (все цифры от 0 до 9 кроме цифры 5):

Вероятность, того что номер не содержит цифру 5:

Ответ:

вероятность дисперсия математический

Задача №2.

Прибор состоит из трех блоков. Исправность каждого блока необходима для функционирования устройства. Отказы блоков независимы. Вероятности безотказной работы блоков соответственно равны 0,6; 0,7; 0,8. В результате испытаний прибор вышел из строя. Определить вероятность того, что отказал один блок

Решение

Обозначим через А событие - прибор вышел из строя. Событие C - отказал один блок.

B1 - 1-ый блок исправен, B2 - 2-ой блок исправен, B3 - 3-ий блок исправен.

Сделаем следующие предположения:

- отказал 1-ый блок:

- отказал 2-ой блок:

- отказал 3-ий блок:

- отказали 1-ый и 2-ой блоки:

- отказали 1-ый и 3-ий блоки:

- отказали 2-ой и 3-ий блоки:

- отказали все блоки:

- все блоки исправны:

Событие достоверно при гипотезах H1, H2, H3, H4, H5, H6, H7,, следовательно, соответствующие условные вероятности равны единице:

По формуле полной вероятности, вероятность того, что прибор вышел из строя:

Событие С достоверно при гипотезах H1, H2, H3, следовательно, соответствующие условные вероятности равны единице:

По формуле полной вероятности, вероятность того, что вышел из строя один блок:

Тогда, искомая вероятность того, что прибор вышел из строя в результате отказа одного из блоков, равна:

Ответ:

Задача № 3.

Случайная величина Х задана плотностью вероятности:

Определить константу С, математическое ожидание, дисперсию, функцию распределения величины Х, а также вероятность ее попадания в интервал.

Решение

1) Вычислим константу исходя из условия нормировки:

Отсюда константа :

2) Определим математическое ожидание СВ Х:

Определим дисперсию СВ Х:

3) Определим функцию распределения величины Х:

4) Определим вероятность попадания величины Х в заданный интервал :

Ответ:

Задание №4.

Начальные данные:

Построим график случайной величины Y=Д(x) рис. 1

Поскольку величина X равномерно распределена на промежутке [a;b], то ее плотность вероятности равна:

Рис. 1

Рис. 2

Определим обратные функции Y=Д(y) на интервале [0;1):

Определим обратные функции Y=Д(y) на интервале [1;16]:

Плотность вероятности величины y равна:

Размещено на Allbest.ru

...

Подобные документы

  • Определение вероятности наступления события, используя формулу Бернулли. Вычисление математического ожидания и дисперсии величины. Расчет и построение графика функции распределения. Построение графика случайной величины, определение плотности вероятности.

    контрольная работа [390,7 K], добавлен 29.05.2014

  • Определение вероятности для двух несовместных и достоверного событий. Закон распределения случайной величины; построение графика функции распределения. Нахождение математического ожидания, дисперсии, среднего квадратичного отклонения случайной величины.

    контрольная работа [97,1 K], добавлен 26.02.2012

  • Решение задач по определению вероятности событий, ряда и функции распределения с помощью формулы умножения вероятностей. Нахождение константы, математического описания и дисперсии непрерывной случайной величины из функции распределения случайной величины.

    контрольная работа [57,3 K], добавлен 07.09.2010

  • Определение вероятностей различных событий по формуле Бернулли. Составление закона распределения дискретной случайной величины, вычисление математического ожидания, дисперсии и среднеквадратического отклонения случайной величины, плотностей вероятности.

    контрольная работа [344,8 K], добавлен 31.10.2013

  • Вычисление математического ожидания, дисперсии, функции распределения и среднеквадратического отклонения случайной величины. Закон распределения случайной величины. Классическое определение вероятности события. Нахождение плотности распределения.

    контрольная работа [38,5 K], добавлен 25.03.2015

  • Определение вероятности того, что из урны взят белый шар. Нахождение математического ожидания, среднего квадратического отклонения и дисперсии случайной величины Х, построение гистограммы распределения. Определение параметров распределения Релея.

    контрольная работа [91,7 K], добавлен 15.11.2011

  • Определение вероятности случайного события; вероятности выиграшных лотерейных билетов; пересечения двух независимых событий; непоражения цели при одном выстреле. Расчет математического ожидания, дисперсии, функции распределения случайной величины.

    контрольная работа [480,0 K], добавлен 29.06.2010

  • Определение вероятности попадания в мишень по формуле Бернулли. Закон и многоугольник распределения случайной величины. Построение функции распределения, графика. Математическое ожидание, дисперсия, среднее квадратическое отклонение случайной величины.

    контрольная работа [86,4 K], добавлен 26.02.2012

  • Определение вероятности определенного события. Вычисление математического ожидания, дисперсии, среднеквадратического отклонения дискретной случайной величины Х по известному закону ее распределения, заданному таблично. Расчет корреляционных признаков.

    контрольная работа [725,5 K], добавлен 12.02.2010

  • Вероятность попадания случайной величины Х в заданный интервал. Построение графика функции распределения случайной величины. Определение вероятности того, что наудачу взятое изделие отвечает стандарту. Закон распределения дискретной случайной величины.

    контрольная работа [104,7 K], добавлен 24.01.2013

  • Алгоритм определения вероятности события и выполнения статистических ожиданий. Оценка возможных значений случайной величины и их вероятности. Расчет математического ожидания, дисперсии и среднего квадратического отклонения. Анализ характеристик признака.

    контрольная работа [263,8 K], добавлен 13.01.2014

  • Определение вероятности брака проверяемых конструкций. Расчет вероятности того, что из ста новорожденных города N доживет до 50 лет. Расчет математического ожидания и дисперсии. Определение неизвестной постоянной С и построение графика функции р(х).

    курсовая работа [290,7 K], добавлен 27.10.2011

  • Дискретные случайные величины и их распределения. Формула полной вероятности и формула Байеса. Общие свойства математического ожидания. Дисперсия случайной величины. Функция распределения случайной величины. Классическое определение вероятностей.

    контрольная работа [33,8 K], добавлен 13.12.2010

  • Вычисление вероятностей возможных значений случайной величины по формуле Бернулли. Расчет математического ожидания, дисперсии, среднеквадратического отклонения, медианы и моды. Нахождение интегральной функции, построение многоугольника распределения.

    контрольная работа [162,6 K], добавлен 28.05.2012

  • Определение математической вероятности правильного набора, если на нечетных местах комбинации стоят одинаковые цифры. Использование классического определения вероятности. Расчет математического ожидания и дисперсии для очков, выпавших на игральных костях.

    контрольная работа [90,2 K], добавлен 04.01.2011

  • Вычисление по классической формуле вероятности. Определение вероятности, что взятая наугад деталь не соответствует стандарту. Расчет и построение графиков функции распределения и случайной величины. Вычисление коэффициента корреляции между величинами.

    контрольная работа [708,2 K], добавлен 02.02.2011

  • Построение доверительных интервалов для математического ожидания и дисперсии, соответствующие вероятности. Исследование статистических характеристик случайной величины на основе выбора объема. Теоретическая и эмпирическая плотность распределения.

    курсовая работа [594,4 K], добавлен 02.01.2012

  • Вычисление общего решения дифференциальных уравнений первого порядка с разделяющимися переменными. Расчет определенного интеграла с точностью до 0,001. Определение вероятности заданных событий, математического ожидания и дисперсии случайной величины.

    контрольная работа [543,4 K], добавлен 21.10.2012

  • Нахождение вероятности события, используя формулу Бернулли. Составление закона распределения случайной величины и уравнения регрессии. Расчет математического ожидания и дисперсии, сравнение эмпирических и теоретических частот, используя критерий Пирсона.

    контрольная работа [167,7 K], добавлен 29.04.2012

  • Исследование сходимости рядов. Степенной ряд интеграла дифференциального уравнения. Определение вероятности событий, закона распределения случайной величины, математического ожидания, эмпирической функции распределения, выборочного уравнения регрессии.

    контрольная работа [420,3 K], добавлен 04.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.