Математические методы исследования экономики
Статистическое изучение взаимосвязей социально-экономических явлений. Причинно-следственные отношения. Функциональная связь, статистическая зависимость. Метод приведения параллельных данных. Парная, частная, множественная корреляция. Нелинейная регрессия.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 15.01.2015 |
Размер файла | 107,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
[Введите текст]
МОСКОВСКИЙ ГУМАНИТАРНО-ЭКНОМИЧЕСКИЙ ИНСТИТУТ
КАЛУЖСКИЙ ФИЛИАЛ
ФАКУЛЬТЕТ МЕНЕДЖМЕНТА И ПСИХОЛОГИИ
Контрольная работа
По дисциплине «Статистика»
Тема: «Математические методы исследования экономики»
КАЛУГА 2014г.
1. Статистическое изучение взаимосвязи социально-экономических явлений
Исследование объективно существующих связей между явлениями -- важнейшая задача общей теории статистики. В процессе статистического исследования зависимостей вскрываются причинно-следственные отношения между явлениями, что позволяет выявлять факторы (признаки), оказывающие основное влияние на вариацию изучаемых явлений и процессов. Причинно-следственные отношения -- это связь явлений и процессов, когда изменение одного из них -- причины, ведет к изменению другого -- следствия.
Особое значение при исследовании причинно-следственных связей имеет выявление временной последовательности: причина всегда должна предшествовать следствию, однако не каждое предшествующее событие следует считать причиной, а последующее -- следствием.
В реальной социально-экономической действительности причину и следствие необходимо рассматривать как смежные явления, появление которых обусловлено комплексом сопутствующих более простых причин и следствий. Между сложными группами причин и следствий возможны многозначные связи, когда за одной причиной будет следовать то одно, то другое действие или одно действие имеет несколько различных причин. Каждое явление может выступать в одних случаях как причина, а в других -- как следствие.
Но чем сложнее изучаемые явления, тем труднее выявить причинно-следственные связи между ними. Взаимное переплетение различных внутренних и внешних факторов неизбежно приводит к некоторым ошибкам в определении причины и следствия. Социально-экономические явления представляют собой результат одновременного воздействия большого числа причин. Поэтому при изучении этих явлений необходимо выявлять главные, основные причины, абстрагируясь от второстепенных.
На первом этапе статистического изучения связи проводят качественный анализ изучаемого явления, связанный с анализомприроды социального или экономического явления при помощи экономической теории, социологии, конкретной экономики. Второй этап -- построение модели связи. Он базируется на методах статистики: группировках, средних величинах, таблицах и т. д. Третий, последний этап -- интерпретация результатов -- вновь связан с качественными особенностями изучаемого явления.
Статистика разработала множество методов изучения связей, выбор которых зависит от целей исследования и поставленных задач. Признаки по их значению для изучения взаимосвязи делятся на два класса. Признаки, обусловливающие изменения других, связанных с ними признаков, называются факторными или просто факторами. Признаки, изменяющиеся под действием факторных признаков, являются результативными.
Связи между явлениями и их признаками классифицируются по степени тесноты связи, направлению и аналитическому выражению.
В статистике различают функциональную связь и статистическую зависимость. Функциональной называют такую связь, при которой определенному значению факторного признака соответствует одно значение результативного признака. Функциональная связь проявляется во всех случаях наблюдения и для каждой единицы исследуемой совокупности.
Если причинная зависимость проявляется не в каждом отдельном случае, а в общем, среднем при большом числе наблюдений, то такая зависимость называется статистической. Частным случаем связи является корреляционная связь, при которой изменение среднего значения результативного признака обусловлено изменением факторных признаков.
По степени тесноты связи различают следующие количественные критерии оценки тесноты связи.
Количественные критерии оценки тесноты связи Величина коэффициента корреляции Характер связи До |±0,3| практически отсутствует 1+ 0,31 - |±0,5 слабая ±0,5 - ±0,8 существенная |±0.81 - |+1,01 тесная |
По направлению выделяют связь прямую и обратную. При прямой связи с увеличением или уменьшением значении факторного признака происходит увеличение или уменьшение значений результативного. Так, рост производительности труда способствует увеличению уровня рентабельности производства. В случае обратной связи значения результативного признака изменяются под воздействием факторного, но в противоположном направлении по сравнению с изменением последнего. Так, с увеличением уровня фондоотдачи снижается себестоимость единицы производимой продукции.
По аналитическому выражению выделяют связи прямолинейные (или просто линейные) и криволинейные (нелинейные). Если статистическая связь между явлениями может быть приближенно выражена уравнением прямой линии, то ее называют линейной связью; если же она выражается уравнением какой-либо кривой линии (параболы, гиперболы, степенной, показательной, экспоненциальной и т.д.), то такую связь называют нелинейной или криволинейной.
Для выявления наличия связи, ее характера и направления в статистике используются следующие методы: анализ параллельных рядов; аналитические группировки; графический метод; метод корреляции.
Метод приведения параллельных данных основан на сопоставлении двух или нескольких радов статистических величин. Такое сопоставление позволяет установить наличие связи и получить представление о ее характере. Сравним изменения возраста и веса ребенка.
Возраст (лет) |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
|
Вес (кг) |
3,2 |
5,3 |
8,0 |
12 |
16.5 |
20,8 |
25 |
С увеличением возраста вес ребенка также увеличивается. Поэтому связь между ними прямая, и описать ее можно или уравнением прямой, или уравнением параболы второго порядка.
Графически взаимосвязь двух признаков изображается с помощью поля корреляции. В системе координат на оси абсцисс откладываются значения факторного признака, а на оси ординат -- результативного. Каждое пересечение линий, проводимых через эти оси, обозначается точкой. При отсутствии тесных связей имеет место беспорядочное расположение точек на графике (рис. 1).
Рис. 1
Чем сильнее связь между признаками, тем теснее будут группироваться точки вокруг определенной линии, выражающей форму связи.
Для социально-экономических явлений характерно, что наряду с существенными факторами, формирующими уровень результативного признака, на него оказывают воздействие многие другие неучтенные и случайные факторы. Это свидетельствует о том, что взаимосвязи явлений, которые изучает статистика, носят корреляционный характер.
Корреляция -- это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при которой изменение одной из них приводит к изменению математического ожидания другой.
В статистике принято различать следующие варианты зависимостей.
1. Парная корреляция -- связь между двумя признаками (результативным и факторным).
2. Частная корреляция -- зависимость между результативным и одним из факторных признаков при фиксированном значении других факторных признаков.
3. Множественная корреляция -- зависимость результативного и двух или более факторных признаков, включенных в исследование.
Корреляционный анализ имеет своей задачей количественное определение тесноты связи между двумя признаками (при парной связи) и между результативным и множеством факторных признаков (при многофакторной связи). Теснота связи количественно выражается величиной коэффициентов корреляции. Коэффициенты корреляции, представляя количественную характеристику тесноты связи между признаками, дают возможность определять «полезность» факторных признаков при построении уравнений множественной регрессии. Величина коэффициента корреляции служит также оценкой соответствия уравнения регрессии выявленным причинно-следственным связям,
Одновременно с корреляцией начата использоваться и регрессия. Корреляция и регрессия тесно связаны между собой: первая оценивает силу (тесноту) статистической связи, вторая исследует ее форму. Обе служат для определения наличия или отсутствия связи между явлениями.
Регрессионный анализ заключается в определении аналитического выражения связи, в котором изменение одной величины (называемой зависимой, или результативным признаком) обусловлено влиянием одной или нескольких независимых величин (факторов), а множество всех прочих факторов, также оказывающих влияние на зависимую величину, принимается за постоянные и средние значения. Регрессия может быть однофакторной (парной) и многофакторной (множественной).
По форме зависимости различают:
а) линейную регрессию, которая выражается уравнением прямой (линейной функцией) вида:
регрессия статистический зависимость
Y=aQ+a{x
б) нелинейную регрессию, которая рассчитывается уравнением вида:
парабола: Y= а,} + а, х + а7 х1;
гипербола: Уу = а0 + -- и т. д.
По направлению связи различают:а) прямую регрессию (положительную), возникающую при условии, если с увеличением или уменьшением независимой величины значения зависимой также соответственно увеличиваются или уменьшаются;
б) обратную регрессию (отрицательную), появляющуюся при условии, что с увеличением или уменьшением независимой величины зависимая, наоборот, уменьшается или увеличивается.
При использовании корреляционно-регрессионного анализа необходимо соблюдать следующие требования.
1. Совокупность исследуемых исходных данных должна быть однородной и математически описываться непрерывными функциями.
2. Все факторные признаки должны иметь количественное (цифровое) выражение.
3. Необходимо наличие достаточно большого объема исследуемой выборочной совокупности.
4. Причинно-следственные связи между явлениями и процессами могут быть описаны линейной или приводимой к линейной формой зависимости.
5. Не должно быть количественных ограничений на параметры модели связи.
6. Необходимо обеспечить постоянство территориальной и временной структур изучаемой совокупности.
Соблюдение данных требований позволяет исследователю построить статистическую модель связи, наилучшим образом аппроксимирующую моделируемые социально-экономические явления и процессы.
Теоретическая обоснованность моделей взаимосвязи, построенных на основе корреляционно-регрессионного анализа, обеспечивается соблюдением следующих основных условий.
1. Все признаки и их совместные распределения должны подчиняться нормальному закону распределения.
2. Дисперсия моделируемого признака должна оставаться постоянной при изменении величины значений факторных признаков.
3. Отдельные наблюдения должны быть независимыми, т. е. результаты, полученные в /-м наблюдении, не должны быть связаны с предыдущими и содержать информацию о последующих наблюдениях, а также влиять на них.
Отступление от выполнения этих условий и предпосылок приводит к тому, что параметры регрессии не будут отражать реальное воздействие на моделируемый показатель.
Одной из проблем построения уравнения регрессии является размерность параметров, т. е. определение числа факторных признаков, включаемых в модель. Их число должно быть оптимальным. Сокращение размерности за счет исключения второстепенных, несущественных факторов позволяет получить модель, быстрее и качественнее реализуемую. В то же время построение модели малой размерности может привести к тому, что она будет недостаточно полно описывать исследуемое явление или процесс в единой системе национального счетоводства. При построении модели число факторных признаков должно быть в 5--6 раз меньше объема изучаемой совокупности.
2. Задача
По городу имеются следующие данные о распределении предприятий по размеру прибыли:
Прибыль, тыс. руб. |
до 600 |
600 - 800 |
800 - 1000 |
1000-1200 |
свыше 1200 |
|
Число предприятий, % |
15 |
35 |
30 |
12 |
8 |
Определите: 1) средний размер прибыли в расчете на одно предприятие; 2) показатели вариации: размах вариации, среднее линейное отклонение, дисперсию, среднее квадратическое отклонение и коэффициент вариации; 3) степень надежности средней величины, использую коэффициент вариации.
3. Тест
Показатели, характеризующие использование элементов национального богатства:
Ответ - А) фондоотдача.
Список использованной литературы
1. Гусаров В. М. Статистика: Учебное пособие для вузов. - М., 2001.
2. Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики: Учебник. - М., 1996.
Размещено на Allbest.ru
...Подобные документы
Функциональные и корреляционные зависимости. Сущность корреляционной связи. Методы выявления наличия корреляционной связи между двумя признаками и измерение степени ее тесноты. Построение корреляционной таблицы. Уравнение регрессии и способы его расчета.
контрольная работа [55,2 K], добавлен 23.07.2009Проведение аналитической группировки и дисперсионного анализа данных, с целью количественно определить тесноту связи. Определение степени корреляции между группировочными признаками и вариационной зависимости переменной, обусловленной регрессией.
контрольная работа [140,5 K], добавлен 17.08.2014Построение уравнения регрессии. Оценка параметров линейной парной регрессии. F-критерий Фишера и t-критерий Стьюдента. Точечный и интервальный прогноз по уравнению линейной регрессии. Расчет и оценка ошибки прогноза и его доверительного интервала.
презентация [387,8 K], добавлен 25.05.2015Дисперсионный анализ по одному признаку для проверки равенства нескольких средних. Множественная линейная регрессия. Зависимость ВАШБП и ВАШСП от показателей активности в динамике. Дисперсионный анализ и линейная регрессия, артрит реактивный.
курсовая работа [2,2 M], добавлен 08.08.2010На основе корреляционно-регрессионного анализа выявление зависимости успеваемости учащихся от таких факторов как: табакокурение; проблемы в семье; времяпровождение в сети Интернет; время, уходящее на телефонные разговоры; посещение дополнительных занятий.
научная работа [212,8 K], добавлен 23.05.2012Выборочное наблюдение 50 предлагаемых на продажу автомобилей Suzuki Liana на сайте сайт auto.ru. Выявления зависимости признака Y (цена) от признаков-факторов X (время эксплуатации и пробег). Распределение Y с помощью интервального вариационного ряда.
курсовая работа [368,3 K], добавлен 17.12.2015Предмет и метод математической статистики. Распределение непрерывной случайной величины с точки зрения теории вероятности на примере логарифмически-нормального распределения. Расчет корреляции величин и нахождение линейной зависимости случайных величин.
курсовая работа [988,5 K], добавлен 19.01.2011Построение линейной множественной регрессии для моделирования потребления продукта в разных географических районах. Расчет оценки дисперсии случайной составляющей. Вычисление и корректировка коэффициентов детерминации. Расчет доверительного интервала.
контрольная работа [814,0 K], добавлен 19.12.2013Математические модели явлений или процессов. Сходимость метода простой итерации. Апостериорная оценка погрешности. Метод вращений линейных систем. Контроль точности и приближенного решения в рамках прямого метода. Метод релаксации и метод Гаусса.
курсовая работа [96,7 K], добавлен 13.04.2011Прямолинейные, обратные и криволинейные связи. Статистическое моделирование связи методом корреляционного и регрессионного анализа. Метод наименьших квадратов. Оценка значимости коэффициентов регрессии. Проверка адекватности модели по критерию Фишера.
курсовая работа [232,7 K], добавлен 21.05.2015Методы регистрации, описания и анализа статистических экспериментальных данных, получаемых в результате наблюдения массовых случайных явлений. Обзор задач математической статистики. Закон распределения случайной величины. Проверка правдоподобия гипотез.
презентация [113,3 K], добавлен 01.11.2013Определение частных производных первого и второго порядков заданной функции, эластичности спроса, основываясь на свойствах функции спроса. Выравнивание данных по прямой методом наименьших квадратов. Расчет параметров уравнения линейной парной регрессии.
контрольная работа [99,4 K], добавлен 22.07.2009Случайная выборка значений двух случайных величин для исследования их совместного распределения. Диаграмма рассеяния опытных данных для четырех видов распределения. Вычисление коэффициента корреляции при большом объеме выборок; проверка его значимости.
реферат [811,7 K], добавлен 27.01.2013Предмет, методы и задачи социально-экономической статистики - система показателей, основные группировки и классификации. Статистическое изучение численности населения, источники статистической информации о населении. Уравнение демографического баланса.
шпаргалка [516,4 K], добавлен 06.04.2008Получение статистических данных для обобщенной характеристики состояния и развития явления. Виды, способы и организационные формы статистического наблюдения. Статистический формуляр, сводка и группировка данных. Статистические таблицы и графики.
реферат [33,3 K], добавлен 12.11.2009Предмет, метод и история возникновения статистики. Построение таблиц, понятие абсолютных и относительных величин и правила действия с ними. Сущность вариации, свойства дисперсии и расчет индексов. Особенности корреляционно-регрессионного анализа.
курс лекций [302,0 K], добавлен 14.07.2011Функциональные и стохастические связи. Статистические методы моделирования связи. Статистическое моделирование связи методом корреляционного и регрессионного анализа. Проверка адекватности регрессионной модели.
курсовая работа [214,6 K], добавлен 04.09.2007Математические методы распознавания (классификации с учителем) и прогноза. Кластеризация как поиск оптимального разбиения и покрытия. Алгоритмы распознавания и интеллектуального анализа данных. Области практического применения систем распознавания.
учебное пособие [2,1 M], добавлен 14.06.2014Статистическое описание и выборочные характеристики двумерного случайного вектора. Оценка параметров линейной регрессии, полученных по методу наименьших квадратов. Проверка гипотезы о равенстве средних нормальных совокупностей при неизвестных дисперсиях.
контрольная работа [242,1 K], добавлен 05.11.2011Методы нахождения минимума функций градиентным методом наискорейшего спуска. Моделирование метода и нахождение минимума функции двух переменных с помощью ЭВМ. Алгоритм программы, отражение в ней этапов метода на языке программирования Borland Delphi 7.
лабораторная работа [533,9 K], добавлен 26.04.2014