Дискретная математика

Множества: операции, свойства, уравнения, декартово произведения. Способы описания бинарного отношения. Эквивалентность, понятия комбинаторики. Графы: определения, расширения модели, оптимизационные задачи. Алгебры, группы, изоморфизмы и гомоморфизмы.

Рубрика Математика
Предмет Математика
Вид учебное пособие
Язык русский
Прислал(а) Битюцкий
Дата добавления 18.01.2015
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Алгоритм упорядочивания множества. Определение декартового произведения, его графическая интерпретация. Обратное декартово произведение множеств. Проецирование на оси координат и на координатные плоскости. Область определения и область значений.

    лекция [126,5 K], добавлен 18.12.2013

  • Оценка алгебры Ли как одного из классических объектов современной математики. Основные определения и особенности ассоциативной алгебры. Нильпотентные алгебры Ли, эквивалентность различных определений нильпотентности. Описание алгебр Ли малых размерностей.

    курсовая работа [79,4 K], добавлен 13.12.2011

  • Понятие алгебры логики, ее сущность и особенности, основные понятия и определения, предмет и методика изучения. Законы алгебры логики и следствия из них, методы построения формул по заданной таблице истинности. Формы представления булевых функций.

    учебное пособие [702,6 K], добавлен 29.04.2009

  • Типичные примеры рефлексивных бинарных отношений. Понятие множества и его элементов. Операции над множествами: объединение, пересечение и разность. Декартово произведение множеств. Отношения функциональные, эквивалентности, порядка. Отношения степени n.

    контрольная работа [163,2 K], добавлен 08.11.2009

  • Свойства операций над множествами. Формулы алгебры высказываний. Функции алгебры логики. Существенные и фиктивные переменные. Проверка правильности рассуждений. Алгебра высказываний и релейно-контактные схемы. Способы задания графа. Матрицы для графов.

    учебное пособие [1,5 M], добавлен 27.10.2013

  • Операции на графах позволяют образовывать новые графы из нескольких более простых. Операции на графах без параллельных ребер. Объединение графов. Свойства операции объединения т, которые следуют из определения операции и свойств операций на множествах.

    реферат [106,0 K], добавлен 27.11.2008

  • Типы бинарных отношений. Изображение графов в виде схемы. Цикл в графе, совпадение его начальной и конечной вершины. Понятие достижимости в теории графов, их математические свойства. Частично упорядоченное множество как один из типов бинарного отношения.

    контрольная работа [116,5 K], добавлен 04.09.2010

  • Системы линейных уравнений. Функции: понятия и определения. Комплексные числа, действия над ними. Числовые, функциональные, тригонометрические ряды. Дифференциальные уравнения. Множества, операции над ними. Теория вероятностей и математической статистики.

    учебное пособие [4,7 M], добавлен 29.10.2013

  • Эквивалентность, ее формальные свойства и операции над отношениями. Доказательство основных теорем, лемм. Отношения эквивалентности на числовой прямой. Характерные свойства толерантности. Применение эквивалентности и толерантности в сферах различных наук.

    курсовая работа [496,5 K], добавлен 20.09.2009

  • Сущность теории групп. Роль этого понятия в математике. Мультипликативная форма записи операций, примеры групп. Формулировка сущности подгруппы. Гомоморфизмы групп. Полная и специальная линейная группы матриц. Классические группы малых размерностей.

    курсовая работа [241,0 K], добавлен 06.03.2014

  • Понятие множества, его трактование Георгом Кантором. Условные обозначения множеств. Виды множеств, способы их задания. Операции над множествами (пересечение, объединение, разность и дополнение), условия их равенства и основные свойства, отношения.

    презентация [1,2 M], добавлен 12.12.2012

  • История развития алгебры как научной дисциплины. Расширения Галуа как универсальный метод решения уравнений любой степени. Определение понятия коммуникативной (абелевой) группы. Сущность кольца и его свойства. Примеры использования конечного поля.

    реферат [50,0 K], добавлен 28.05.2014

  • Решение задач по факультативному курсу комбинаторики, подготовка сообщений и докладов. Комбинаторика как ветвь математики, изучающая комбинации и перестановки предметов. Основные правила суммы и правило произведения. Поиск числа сочетаний с повторениями.

    дипломная работа [508,5 K], добавлен 26.01.2011

  • Способы задания, предел и непрерывность функции. Свойства неопределенного интеграла. Понятие числового ряда и свойства сходящихся рядов. Порядок дифференциального уравнения. Случайные события и операции над ними. Классическое определение вероятности.

    учебное пособие [532,5 K], добавлен 23.01.2014

  • Основные понятия и определения. * - алгебры. Представления. Тензорные произведения. Задача о двух ортопроекторах. Два ортопроектора в унитарном пространстве, в сепарабельном гильбертовом пространстве. Спектр суммы двух ортопроекторов.

    дипломная работа [303,0 K], добавлен 04.06.2002

  • Определения понятия множество. Предельная точка множества, предел функции в точке. Эквивалентные, счетные и несчетные множества. Замкнутые и открытые множества. Функции на множестве. Свойства непрерывных функций на замкнутом ограниченном множестве.

    курсовая работа [222,3 K], добавлен 11.01.2011

  • Логическая переменная в алгебре логики. Логические операции: отрицание, конъюнкция, дизъюнкция, импликация, эквивалентность. Основные законы алгебры логики. Правила минимизации логической функции (избавление от операций импликации и эквивалентности).

    курсовая работа [857,2 K], добавлен 16.01.2012

  • Бинарные отношения на множестве. Рефлективность, примеры рефлективности. Симметричность, транзитивность, отношение порядка. Примеры дестрибутивных и недестребутивных решеток. Основные определения и свойства теории структур. Операции над множествами.

    курсовая работа [64,0 K], добавлен 04.06.2015

  • Определение, типы и примеры отношений, способы их задания; алгебраическая и геометрическая интерпретации. Разбиение на классы и фактор-множество. Смысл отношения эквивалентности. Теорема о равносильности определений. Отношения в школьной математике.

    курсовая работа [1,0 M], добавлен 01.10.2011

  • Понятие множества, его обозначения. Операции объединения, пересечения и дополнения множеств. Свойства счетных множеств. История развития представлений о числе, появление множества натуральных, рациональных и действительных чисел, операции с ними.

    курсовая работа [358,3 K], добавлен 07.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.