Основные этапы построения и анализа регрессионной модели

Выдвижение рабочей гипотезы. Теоретическая регрессия. Влияние случайного члена. Простая регрессионная модель. Метод наименьших квадратов. Прямой расчет коэффициентов регрессии. Проверка гипотез о статистической значимости уравнений парной регрессии.

Рубрика Математика
Вид презентация
Язык русский
Дата добавления 20.01.2015
Размер файла 236,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.


Подобные документы

  • Знакомство с уравнениями линейной регрессии, рассмотрение распространенных способов решения. Общая характеристика метода наименьших квадратов. Особенности оценки статистической значимости парной линейной регрессии. Анализ транспонированной матрицы.

    контрольная работа [380,9 K], добавлен 05.04.2015

  • Статистическое описание и выборочные характеристики двумерного случайного вектора. Оценка параметров линейной регрессии, полученных по методу наименьших квадратов. Проверка гипотезы о равенстве средних нормальных совокупностей при неизвестных дисперсиях.

    контрольная работа [242,1 K], добавлен 05.11.2011

  • Прямолинейные, обратные и криволинейные связи. Статистическое моделирование связи методом корреляционного и регрессионного анализа. Метод наименьших квадратов. Оценка значимости коэффициентов регрессии. Проверка адекватности модели по критерию Фишера.

    курсовая работа [232,7 K], добавлен 21.05.2015

  • Вероятностное обоснование метода наименьших квадратов как наилучшей оценки. Прямая и обратная регрессии. Общая линейная модель. Многофакторные модели. Доверительные интервалы для оценок метода наименьших квадратов. Определение минимума невязки.

    реферат [383,7 K], добавлен 19.08.2015

  • Основные задачи регрессионного анализа в математической статистике. Вычисление дисперсии параметров уравнения регрессии и дисперсии прогнозирования эндогенной переменной. Установление зависимости между переменными. Применение метода наименьших квадратов.

    презентация [100,3 K], добавлен 16.12.2014

  • Определение частных производных первого и второго порядков заданной функции, эластичности спроса, основываясь на свойствах функции спроса. Выравнивание данных по прямой методом наименьших квадратов. Расчет параметров уравнения линейной парной регрессии.

    контрольная работа [99,4 K], добавлен 22.07.2009

  • Проверка адекватности линейной регрессии. Вычисление выборочного коэффициента корреляции. Обработка одномерной выборки методами статистического анализа. Проверка гипотезы значимости с помощью критерия Пирсона. Составление линейной эмпирической регрессии.

    задача [409,0 K], добавлен 17.10.2012

  • Построение модели множественной регрессии теоретических значений динамики ВВП, определение средней ошибки аппроксимации. Выбор фактора, оказывающего большее влияние. Построение парных моделей регрессии. Определение лучшей модели. Проверка предпосылок МНК.

    курсовая работа [352,9 K], добавлен 26.01.2010

  • Цели линейной модели множественной регрессии (прогноз, имитация, сценарий развития, управление). Анализ эконометрической сущности изучаемого явления на априорном этапе. Параметризация и сбор необходимой статистической информации, значимость коэффициентов.

    контрольная работа [68,7 K], добавлен 21.09.2009

  • Описание способов нахождения коэффициентов регрессии модели полнофакторного эксперимента. Проверка многофакторных статистических гипотез на однородность ряда дисперсий, значимость и устойчивость математических коэффициентов множественной корреляции.

    контрольная работа [1,2 M], добавлен 05.08.2010

  • Построение уравнения регрессии. Оценка параметров линейной парной регрессии. F-критерий Фишера и t-критерий Стьюдента. Точечный и интервальный прогноз по уравнению линейной регрессии. Расчет и оценка ошибки прогноза и его доверительного интервала.

    презентация [387,8 K], добавлен 25.05.2015

  • Значения коэффициента регрессии (b) и сводного члена уравнения регрессии (а). Определение стандартной ошибки предсказания являющейся мерой качества зависимости величин Y и х с помощью уравнения линейной регрессии. Значимость коэффициента регрессии.

    задача [133,0 K], добавлен 21.12.2008

  • Определения оптимизации схемы планирования эксперимента при работе со швейной машиной. Расчёт коэффициентов уравнения регрессии и выделение значимых коэффициентов прочности ткани и растяжения между лапкой и иглой. Проверка гипотезы адекватности модели.

    курсовая работа [1,2 M], добавлен 30.12.2014

  • Установление корреляционных связей между признаками многомерной выборки. Статистические параметры регрессионного анализа линейных и нелинейных выборок. Нахождение функций регрессии и проверка гипотезы о значимости выборочного коэффициента корреляции.

    курсовая работа [304,0 K], добавлен 02.03.2017

  • Механизм и основные этапы нахождения необходимых параметров методом наименьших квадратов. Графическое сравнение линейной и квадратичной зависимостей. Проверка гипотезы о значимости выборочного коэффициента корреляции при заданном уровне значимости.

    курсовая работа [782,6 K], добавлен 19.05.2014

  • Методика и основные этапы расчета параметров линейного уравнения парной регрессии с помощью программы Excel. Анализ качества построенной модели, с использованием коэффициента парной корреляции, коэффициента детерминации и средней ошибки аппроксимации.

    лабораторная работа [22,3 K], добавлен 15.04.2014

  • Cтатистический анализ зависимости давления. Построение диаграммы рассеивания и корреляционной таблицы. Вычисление параметров для уравнений линейной и параболической регрессии, выборочных параметров. Проверка гипотезы о нормальном распределении признака.

    курсовая работа [613,3 K], добавлен 24.10.2012

  • Алгоритм построения ранговой оценки неизвестных параметров регрессии. Моделирование регрессионных зависимостей с погрешностями, имеющими распределения с "тяжёлыми" хвостами. Вычисление асимптотической относительной эффективности рангового метода.

    курсовая работа [1,2 M], добавлен 05.01.2015

  • Построение теоретико-вероятностной модели исследуемого явления случайной величины математическими выводами. Реализация выборки статистической моделью, описывающей серию опытов. Точечная (выборочная) оценка неизвестного параметра и кривая регрессии.

    курсовая работа [311,7 K], добавлен 10.04.2011

  • Изучение аппроксимации таблично заданной функции методом наименьших квадратов при помощи вычислительной системы Mathcad. Исходные данные и функция, вычисляющая матрицу коэффициентов систему уравнений. Выполнение вычислений для разных порядков полинома.

    лабораторная работа [166,4 K], добавлен 13.04.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.